Numerical Hydrodynamics: Part 1

  • Ian Hawke

GW170817

The only NS merger seen in GWs:

  1. high SNR;
  2. covers frequencies from 10s-1000s Hz;
  3. observed in multiple detectors, allowing localisation.

LIGO, 1710.05832

GW170817

NS constraints from GWs:

  1. Mass $\sim 1.4 M_{\odot}$;
  2. Radius $\sim 11 \pm 1 \text{ km}$;
  3. weak constraints on EOS through tidal compressibility.

LIGO, 1710.05832

Summit supercomputer. Photo: Carlos Jones/ORNL

  • Sun: $\sim 10^{60}$ elementary particles.
  • Computer resource on Earth: $\sim 10^{25}$ FLOPs.

Averaging

Open Astrophysics Bookshelf

Modelling: inspiral

For inspiral only bulk properties matter:

  • mass;
  • spin;
  • compactness (EOS);
  • bulk internal magentic field.

Leads to key numerical limits:

  • $\lambda_{\text{GW}} \sim 10^6 \text{ m} \implies L_{\text{grid}} \sim 10^7 \text{ m}$;
  • Phase accuracy $\implies \Delta x \sim 100 \text{ m}$.
  • Stability: $\Delta x \sim 100 \text{ m} \implies \Delta t \sim 10^{-6} \text{ s}$.

Multi messenger

Want to complement GW observations with

  • electromagnetic signals (radio, X-ray, $\gamma$, ...);
  • neutrino observations;
  • anything else we can get.

Done with GW170817: inferred jet properties suggest more constraints on progenitors.

LIGO, Fermi, INTEGRAL et al, 1710.05833

Questions...

  • Stretch out;
  • have a break;
  • add questions to the chat.

Shibata & Uryƫ 1999

Conservation

EFEs imply $\nabla_a T^{ab} = 0$.

Pick a tetrad, $e_b^{(j)}$ to get $$ \begin{aligned} && \nabla_a \left[ e_b^{(j)} T^{ab} \right] &= \tfrac{1}{\sqrt{-g}} \partial_a \left( \sqrt{-g} e_b^{(j)} T^{ab} \right) = -T^{ab} \nabla_a e_b^{(j)} \\ \implies && \partial_t {\bf q} + \partial_i {\bf f}^{(i)}({\bf q}) &= {\bf s}. \end{aligned} $$ Balance law form.

Only four equations: need other constituitive equations for, eg, EM, particle number, etc.

Shock formation

Advection equation $$ \partial_t q + \partial_x (v q) = 0. $$ Information moves right, speed $v$.

Burgers equation $$ \partial_t q + \tfrac{1}{2} \partial_x q^{2} = 0. $$ Information moves right, speed $q$. Shocks form.

Shocks and uniqueness

Shock speed $V_s$ from Rankine-Hugoniot, $V_s \left[ q \right] = \left[ f \right]$. Burgers equation $$ \partial_t q + q \partial_x q = 0 $$ is equivalent to any of $$ \partial_t q^n + \tfrac{n}{n+1} \partial_x q^{n+1} = 0, $$ but they all have different shock speeds.

Total derivative form crucial: otherwise need more information to fix solution.

Euler equations in relativity

  • Need: $\rho, u^a, \epsilon$.
  • Particles conserved: $$\nabla_a ( \rho u^a ) = 0.$$
  • Stress-energy: $$T_{ab} = \rho (1 + \epsilon) u_a u_b + p \perp_{ab}.$$
  • EOS: implies $p = p(\rho, \epsilon, \dots)$, and more.
  • Mixture models: $Y_{\text{x}}$ from $$\nabla_a ( \rho Y_{\text{x}} u^a ) = 0.$$

Slow motion limit

Newtonian: $$ \partial_t \begin{pmatrix} \rho \\ \rho v \\ E \end{pmatrix} + \partial_x \begin{pmatrix} \rho v \\ \rho v^2 + p \\ (E + p) v \end{pmatrix} = {\bf 0}. $$

Propagation speeds $$ v, v \pm c_s: \quad c_s^2 \sim \frac{p}{\rho}. $$

Back up to relativity

Newtonian $\partial_t \begin{pmatrix} \rho \\ \rho v \end{pmatrix} + \partial_x \begin{pmatrix} \rho v \\ \rho v^2 + p \end{pmatrix} = {\bf 0}.$
SR $\partial_t \begin{pmatrix} \rho \color{red}{W} \\ \rho \color{red}{h W^2} v \end{pmatrix} + \partial_x \begin{pmatrix} \rho \color{red}{W} v \\ \rho \color{red}{h W^2} v^2 + p \end{pmatrix} = {\bf 0}.$
GR $ \begin{aligned} \partial_t \color{gold}{\sqrt{\gamma}} \begin{pmatrix} \rho W \\ \rho h W^2 v_j \end{pmatrix} &+ \partial_i \color{gold}{\sqrt{-g}} \begin{pmatrix} \rho W \left( v^i - \color{gold}{\frac{\beta^i}{\alpha}} \right) \\ \rho h W^2 v_j \left( v^i - \color{gold}{\frac{\beta^i}{\alpha}} \right) + p \delta^i_j \end{pmatrix} = \color{gold}{{\bf s}}, \\ {\bf s} &= \sqrt{-g} \begin{pmatrix} 0 \\ T^{\mu\nu} \left( \partial_\mu g_{\nu j} - \Gamma^\mu_{\nu j} \right) \end{pmatrix}. \end{aligned} $

Electromagnetism

Charge current $j^a \sim e (n^a_{\text{e}} - n^a_{\text{p}})$. Source for EM fields described by Faraday tensor $F_{ab} = \nabla_{[a} A_{b]}$, so $$ \begin{aligned} \nabla_a F^{ab} &= 4 \pi j^a \\ \nabla_a {}^* F^{ab} &= 0. \end{aligned} $$ Gives Maxwell's equations: use $E^a, B^a \implies$ balance law form.

$$ T_{ab} = T_{ab}^{\text{hydro}} + T_{ab}^{\text{EM}}. $$

  • Current diverges as resistivity $\to 0$: MHD limit $\implies {\bf E} = {\bf v} \times {\bf B}$.
  • Constraint $\nabla_a B^a = 0$ must hold.

Questions...

  • Deep breath;
  • have a drink;
  • stretch out;
  • add questions to the chat.

Kiuchi et al, 1509.09205

Outside the NSs

C2P

Newtonian: $v = S / \rho$, etc.

Relativity: $\{ \rho_0, v^j, \epsilon \} \leftarrow f(D, S_j, \tau)$.

  • Implicit and nonlinear: guess $\bar{p}$, solve $\bar{p} - p(\bar{\rho}_0, \bar{\epsilon}) = 0$;
  • Expensive and not always robust.

GRMHD: strong coupling through ${\bf E} = {\bf v} \times {\bf B}$.

  • Multi-dimensional nonlinear algebraic equation;
  • Very expensive and sensitive.

Summary

We have discussed

  • what's practical;
  • the hydrodynamic description;
  • balance laws;
  • the remaining EOM;
  • implementation issues.

Next lecture: how we actually evolve.