The only NS merger seen in GWs:
NS constraints from GWs:
For inspiral only bulk properties matter:
Leads to key numerical limits:
Want to complement GW observations with
Done with GW170817: inferred jet properties suggest more constraints on progenitors.
EFEs imply $\nabla_a T^{ab} = 0$.
Pick a tetrad, $e_b^{(j)}$ to get $$ \begin{aligned} && \nabla_a \left[ e_b^{(j)} T^{ab} \right] &= \tfrac{1}{\sqrt{-g}} \partial_a \left( \sqrt{-g} e_b^{(j)} T^{ab} \right) = -T^{ab} \nabla_a e_b^{(j)} \\ \implies && \partial_t {\bf q} + \partial_i {\bf f}^{(i)}({\bf q}) &= {\bf s}. \end{aligned} $$ Balance law form.
Only four equations: need other constituitive equations for, eg, EM, particle number, etc.
Advection equation $$ \partial_t q + \partial_x (v q) = 0. $$ Information moves right, speed $v$.
Burgers equation $$ \partial_t q + \tfrac{1}{2} \partial_x q^{2} = 0. $$ Information moves right, speed $q$. Shocks form.
Shock speed $V_s$ from Rankine-Hugoniot, $V_s \left[ q \right] = \left[ f \right]$. Burgers equation $$ \partial_t q + q \partial_x q = 0 $$ is equivalent to any of $$ \partial_t q^n + \tfrac{n}{n+1} \partial_x q^{n+1} = 0, $$ but they all have different shock speeds.
Total derivative form crucial: otherwise need more information to fix solution.
Newtonian: $$ \partial_t \begin{pmatrix} \rho \\ \rho v \\ E \end{pmatrix} + \partial_x \begin{pmatrix} \rho v \\ \rho v^2 + p \\ (E + p) v \end{pmatrix} = {\bf 0}. $$
Propagation speeds $$ v, v \pm c_s: \quad c_s^2 \sim \frac{p}{\rho}. $$
Newtonian | $\partial_t \begin{pmatrix} \rho \\ \rho v \end{pmatrix} + \partial_x \begin{pmatrix} \rho v \\ \rho v^2 + p \end{pmatrix} = {\bf 0}.$ |
SR | $\partial_t \begin{pmatrix} \rho \color{red}{W} \\ \rho \color{red}{h W^2} v \end{pmatrix} + \partial_x \begin{pmatrix} \rho \color{red}{W} v \\ \rho \color{red}{h W^2} v^2 + p \end{pmatrix} = {\bf 0}.$ |
GR | $ \begin{aligned} \partial_t \color{gold}{\sqrt{\gamma}} \begin{pmatrix} \rho W \\ \rho h W^2 v_j \end{pmatrix} &+ \partial_i \color{gold}{\sqrt{-g}} \begin{pmatrix} \rho W \left( v^i - \color{gold}{\frac{\beta^i}{\alpha}} \right) \\ \rho h W^2 v_j \left( v^i - \color{gold}{\frac{\beta^i}{\alpha}} \right) + p \delta^i_j \end{pmatrix} = \color{gold}{{\bf s}}, \\ {\bf s} &= \sqrt{-g} \begin{pmatrix} 0 \\ T^{\mu\nu} \left( \partial_\mu g_{\nu j} - \Gamma^\mu_{\nu j} \right) \end{pmatrix}. \end{aligned} $ |
Charge current $j^a \sim e (n^a_{\text{e}} - n^a_{\text{p}})$. Source for EM fields described by Faraday tensor $F_{ab} = \nabla_{[a} A_{b]}$, so $$ \begin{aligned} \nabla_a F^{ab} &= 4 \pi j^a \\ \nabla_a {}^* F^{ab} &= 0. \end{aligned} $$ Gives Maxwell's equations: use $E^a, B^a \implies$ balance law form.
$$ T_{ab} = T_{ab}^{\text{hydro}} + T_{ab}^{\text{EM}}. $$
Newtonian: $v = S / \rho$, etc.
Relativity: $\{ \rho_0, v^j, \epsilon \} \leftarrow f(D, S_j, \tau)$.
GRMHD: strong coupling through ${\bf E} = {\bf v} \times {\bf B}$.
We have discussed
Next lecture: how we actually evolve.