Let ${\cal L}_{1,2}$ describe different bits of physics. Then $$ \begin{aligned} \partial_t q &= {\cal L}_1 q + \varepsilon {\cal L}_2 q, \\ \partial_t \tilde{q} &= {\cal L}_1 \tilde{q} \end{aligned} $$ are indistinguishable for times $\sim \varepsilon^{-1}$.
As $\varepsilon$ is a timescale, look for physics/problem $\tau$, or $v / L$, or $D / L^2$, or...
Argument fails for
Ideal MHD assumes $\sigma \to \infty$ to enforce $$ {\bf E} = {\bf v} \times {\bf B}. $$
Detailed calculations show $\sigma$ drops when
All possible in (post) merger.
A more general Ohm's law: $$ \def\n{{\rm n}} \def\p{{\rm p}} \def\e{{\rm e}} \def\l{\Lambda} \def\c{{\rm c}} \def\h{\Sigma} \def\s{\mathrm{s}} \newcommand{\A}{{\cal A}} {\scriptsize \begin{aligned} e n_\e \mathcal E_b &- \left( 1 - {n_\e \mu_\e \over p+\varepsilon}\right) \epsilon_{bac} J^a b^c - {1\over n_\e e} \left( \hat {\mathcal R} - \Gamma_\e s \A^{\e\s} \right) J_b \\ &= - en_\e \epsilon_{bac} v_\p^a b^c + \mathcal R_{\e\n} w^{\n\p}_b + \left( \mathcal R_{\e\s} - \Gamma_\e s \A^{\e\s} \right) \left( {q_b \over sT} - v^\p_b\right) \\ &-n_\e \mu_\e \left[ \left( v_\p^a - {J^a\over e n_\e} \right) \nabla_a u_b + \perp^c_b u^a \nabla_a \left( v^\p_c - {J_c\over e n_\e} \right) + \left( v^\p_b - {J_b \over e n_\e} \right) u^a {1\over \mu_\e} \nabla_a \mu_\e \right] \\ &+ 2 n_\e u^a \nabla_{[a} s\A^{\e\s} w^{\s\e}_{b]} - e \Gamma_\e \left[ \perp^a_b+ u^a \left( v^\p_b -{J_b\over en_\e}\right) \right] A_a . \end{aligned} } $$
From Andersson et al, 1610.00449. Only considers $e, p, n$ plus heat.
Instead impose $j^a = q n^a + J^a$, $$ J^i = q v^i + W \sigma \left[ E^i + \epsilon^{ijk} v_j B_k - (v_k E^k) v^i \right]. $$
Can now solve full Einstein-Euler-Maxwell (11 PDEs), given constituitive relations (EOS, $\sigma \equiv \sigma(\rho, T)$).
However, near ideal MHD write $\eta = \sigma^{-1} \ll 1$, to see $$ \partial_t {\bf E} \sim \frac{1}{\eta} \left[ {\bf E} + \dots \right]: \quad \text{stiff}. $$
Solution of $$ \frac{\text{d} q}{\text{d} t} = F(q) = -\alpha q, \qquad q(0) = 1 $$ is $\exp[-\alpha t]$. Can use $$ \begin{aligned} \text{Forward Euler:} && q^{n+1} &= q^n + \Delta t \, F(q^n), \\ \text{Backward Euler:} && q^{n+1} &= q^n + \Delta t \, F(q^{n+1}). \end{aligned} $$
Solves stiff system $ \partial_t q + \partial_x f = \varepsilon^{-1} R(q)$ by writing a Runge-Kutta step as $$ \begin{aligned} q^{(i)} &= \color{green}{q^n} - \Delta t \, \color{green}{\sum_{j=1}^{i-1} \left[ \tilde{a}_{ij} \partial_x f(q^{(j)}) - \frac{a_{ij}}{\varepsilon} R(q^{(j)}) \right]} + \\ &\qquad \Delta t \, \color{red}{\sum_{k=i} \frac{a_{ik}}{\varepsilon} R(q^{(k)})}. \end{aligned} $$
Choose coefficients $a_{ik}$ to minimize implicit cost.
Look at $$ \begin{aligned} \partial_t q + \partial_x v &= 0 \\ \partial_t v + a \partial_x q &= \varepsilon^{-1} \left[ f(q) - v \right]. \end{aligned} $$
Chapman-Enskog expansion on resistive MHD: $$ {\small \newcommand{\pdv}[2]{\frac{\partial {#1}}{\partial {#2}}} \newcommand{\bm}[1]{{\bf {#1}}} \begin{aligned} \partial_t (\sqrt{\gamma} {\bf q}) &+ \partial_i (\sqrt{-g} {\bf f}^i_0 + {\bf F}^i ) = \sqrt{-g} {\bf s}_0 + {\bf S} + \partial_i {\bf D}^i, \\ {\bf D}^i &= - \pdv{\bm{f}^i_0}{\overline{\bm{q}}} \bigg( \pdv{\overline{\bm{s}}_0}{\overline{\bm{q}}} \bigg)^{-1} \bigg[ \partial_j(\sqrt{-g} \overline{\bm{f}}^j_0) + \dots \bigg]. \end{aligned} } $$
Revisit the weak form. Multiply by $\phi$, integrate: $$ \int_V \phi \partial_t {\bf q} + \oint_{\partial V} \phi {\bf f} - \int_V {\bf f} \cdot \nabla \phi = \int_V \phi {\bf s}. $$
Expand both ${\bf q}, \phi$ as eg $q(x, t) = \hat{q}_m(t) P_m(x)$. The weak form gives $$ \int_V P_m P_n \hat{\phi}_m \partial_t \hat{q}_n + \oint_{\partial V} P_m P_n \hat{\phi}_m \hat{f}_n - \int_V P_m \hat{f}_m \hat{\phi}_n \nabla P_n = \int_V P_m P_n \hat{\phi}_m \hat{s}_n. $$
Simplifies to $$ M \partial_t \hat{{\bf q}} + S^T f(\hat{{\bf q}}) = - [\phi {\bf F}]_{x_{i-1/2}}^{x_{i+1/2}}. $$
We have discussed
Further possibilities for the future include