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Introduction

This book introduces the concepts needed for numerical modelling with climate applica‐
tions in mind. These are the notes for the Numerical Methods course for the Mathematics
for our Future Climate CDT.

For more detail, the most precise comparator would be (Durran 2010) which covers nu‐
merical methods for Geophysics. For high accuracy methods including spectral and finite
element approaches the books of (Hesthaven 2017), (Hughes 2012), (Trefethen 1996) and
(Boyd 2001) are all important and useful. For high speed flows where discontinuities mat‐
ter the books of (LeVeque 2002), (LeVeque 1992) and (Toro 2013) are key texts.

An aside on computers

The numerical methods we use and the design of the computers that we run the simula‐
tions on are closely linked. Changes in computer design (increases in memory, the move
to parallel computing) can change which algorithms are most efficient. Sometimes com‐
puter architecture is specifically designed around particular algorithmic problems (such as
graphical processing units ‐ GPUs). Therefore it is important to have a loose understanding
of how different parts of the algorithm interact with the computer architecture.

Key steps

Ultimately we want the computer to do an arithmetic calculation, which is then repeated
many (many!) times. A typical calculation would update a single value on a single point
of a grid, where there may be multiple values on each of the many (many!) grid points.
A computer will do a single calculation incredibly quickly, in one cycle, typically less than
a nanosecond. However, in order to do the calculation the computer needs to know the
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values of the terms going in to the calculation. These will be stored in computer memory.
If they are in cache memory then the values are “close” to the core doing the calculation
andwill be retrieved quickly (maybe 5‐50 cycles). If they are inmainmemory then theywill
be retrieved more slowly (maybe 1,000 cycles). Main memory is much larger than cache
memory, so only small calculations can use just the cache.

If we want to do extremely large calculations the the data will not fit in main memory of a
single core or node. In this case we use parallel computing where the calculation is spread
between different parts of a larger computer. In splitting the data this way we introduce
artificial boundaries into the calculation, whose values need providing from somewhere.
Communicating this data over the network is even slower again, taking maybe 100,000
cycles. The more parallel computing is needed, or the more values used in updating a
single grid point, the more the communication cost increases.

Finally, we may want to store data permanently on disk, or read complex data from a
large table on disk. This is slower again, taking at least 1,000,000 cycles or more for large
amounts of data. Careful choices of which data is stored and how can significantly improve
the efficiency of a code.

More precise numbers on the efficiency and latency of computational operations can be
found online. However, for numerical methods it is one of many concerns that need bal‐
ancing. This course covers a range of numerical methods, from simple finite difference
methods, more complex finite element methods designed to work on complex domains,
and the high accuracy spectral methods. Whilst the low accuracy of finite differences com‐
pared to spectral methods may make them seem like a poor choice in theory, their sim‐
plicity can make it easier to use them efficiently, as the limited amount of data needed im‐
proves cache locality and reduces communication. Most production codes are the result
of careful consideration of the trade‐offs, and practical measurement of code efficiency.
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1 Climate models

1.1 Navier-Stokes Equations

The standardmodels of gases and fluids rely on theNavier‐Stokes equations. These express
the conservation of energy, momentum, and particle number of the material coupled to
gravity and allowing for sources of energy and diffusion. The form we will use can be writ‐
ten

The Lagrangian derivative
𝐷Ψ
𝐷𝑡 = 𝜕Ψ

𝜕𝑡 + u ⋅ ∇Ψ

Momentum
𝐷u
𝐷𝑡 = −2𝛀 × u − ∇𝑝

𝜌 + g+

𝜇𝑢 (∇2u + 1
3∇(∇ ⋅ u))

Continuity
𝐷𝜌
𝐷𝑡 + 𝜌∇ ⋅ u = 0

Energy
𝐷𝜃
𝐷𝑡 = 𝑄 + 𝜇𝜃∇2𝜃

(1.1)

To close the systemwe need to link the microphysical behaviour of the particles making up
the material to the forces they impose, through an equation of state. An example would
be the perfect gas law 𝑝 = 𝜌𝑅𝑇 .

The various symbols defined above are outlined in the following table.

Symbol Meaning

u Wind vector
𝑡 Time
𝛀 Rotation rate of planet
𝜌 Density of air
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Symbol Meaning

𝑝 Atmospheric pressure
g Gravity vector (downwards)
𝜃 Potential temperature, 𝑇 (𝑝0/𝑝)𝜅

𝜅 heat capacity ratio ≃ 1.4
𝑄 Source of heat

𝜇𝑢, 𝜇𝜃 Diffusion coefficients

1.2 Shallow Water Equations

The Navier‐Stokes equations are complex and accurately captures physics (such as acoustic
waves) that has minimal impact on climate models, and whose numerical solution would
impose problematic constraints on the cost and accuracy of the approximation. One sim‐
pler model is the shallow water equations (SWE). The assumptions needed to derive the
SWE are

• Horizontal length scale ≫ vertical length scale;
• Very small vertical velocities.

To get the SWE, take the Navier‐Stokes equations over orography and depth integrate. This
gives the system

𝐷u
𝐷𝑡 = −𝛀 × u − 𝑔∇(ℎ + ℎ0) + 𝜇𝑢∇2u,

𝐷ℎ
𝐷𝑡 + ℎ∇ ⋅ u = 0.

(1.2)

In the SWE the terms are

u Depth integrated wind vector
𝑡 Time
𝛀 Rotation rate of planet
ℎ Fluid depth
𝑔 Acceleration due to gravity (in the direction

of the depth integration)
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∇ Gradients in the horizontal directions
ℎ0 height of the bottom topography with

respect to a reference point
𝜇𝑢 Diffusion of momentum

Exercise 1.1. Considering the meaning of the terms in the momentum equation in (Equa‐
tion 1.1), what are the meanings of the terms of the momentum equation of the SWE?

1.3 Linearised Shallow Water Equations

The Shallow Water Equations are simpler than the Navier‐Stokes equations but are still
nonlinear. Dropping the nonlinear terms is an over‐simplification for real models, but can
be useful when developing methods. To linearise the SWE we assume that

• u = (𝑢, 𝑣, 0)𝑇 is small;
• 2𝛀 = (0, 0, 𝑓)𝑇 ;
• ℎ = 𝐻 + ℎ′, where 𝐻 is uniform in space and time and ℎ′ is small;
• the product of two small variables is ignored (even if one or both are inside a differ‐

ential);
• ℎ0 and 𝜇𝑢 are ignored.

This gives the linearised equations for 𝑢, 𝑣, and ℎ′, expressed in terms of 𝑓 (rather than
𝛀), as

𝜕𝑢
𝜕𝑡 = 𝑓𝑣 − 𝑔𝜕ℎ′

𝜕𝑥 ,
𝜕𝑣
𝜕𝑡 = −𝑓𝑢 − 𝑔𝜕ℎ′

𝜕𝑦 ,
𝜕ℎ′

𝜕𝑡 = −𝐻 (𝜕𝑢
𝜕𝑥 + 𝜕𝑣

𝜕𝑦) .

(1.3)
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Figure 1.1: A sketch of the vertical fluid direction which is integrated out in the derivation
of the shallow water equations.
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1.4 Advection

If the wind vector u is known (through, for example, the solution of the Navier‐Stokes or
ShallowWater equations) then we can solve for the transport of a property or particle that
is moved by the fluidmaterial. A standard example in climatemodelling is pollution, where
the concentration of the pollutant is represented by the scalar field Ψ. The pollutant then
obeys the advection equation

𝐷Ψ
𝐷𝑡⏟
(1)

= 𝜕Ψ
𝜕𝑡⏟
(2)

+ u ⋅ ∇Ψ⏟
(3)

= 𝑆⏟
(4)

+ 𝜇Ψ∇2Ψ⏟
(5)

. (1.4)

The terms here are

1. the Lagrangian derivative of the pollution concentration,
2. the rate of change of the pollution concentration at a fixed point in space,
3. the advection of the pollution concentration by the wind velocity,
4. the source or sink of pollution concentration,
5. the diffusion of the pollution concentration.

Frequently when we refer to the linear advection equation we mean the case with no
source or sink of pollution, nor any diffusion. In this case we have

𝐷Ψ
𝐷𝑡 = 𝜕Ψ

𝜕𝑡 + u ⋅ ∇Ψ = 0. (1.5)

We typically consider the wind velocity u to be a fixed function of time, and sometimes
simplify further to make it spatially constant. Note now that if ∇ ⋅ u = 0 then the linear
advection equation can be written in flux form

𝜕Ψ
𝜕𝑡 + ∇ ⋅ (Ψu) = 0. (1.6)

This is a special case of an equation in conservation law form,

𝜕q
𝜕𝑡 + ∇ ⋅ f (q) = 0,

for which special numerical methods can be constructed.
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2 Spectral methods

In previous chapters we have discussed the stability and accuracy of finite differencemeth‐
ods by looking at the impact in frequency space. This can be seen either as a Fourier trans‐
form, or as a function basis expansion as, for example, a complex Fourier series.

We could move from numerically solving the differential equation using finite differences
to instead numerically solving the function basis expansion. This chapter outlines the key
issues behind that approach, which is broadly called a spectral method.

2.1 Advection expansions

As usual we will start with the one dimensional linear advection equation (Equation 1.5) in
the form

𝜕𝜙
𝜕𝑡 + 𝑢𝜕𝜙

𝜕𝑥 = 0. (2.1)

We assume the boundaries are periodic. We then approximate the solution as a truncated
complex Fourier series

𝜙(𝑥, 𝑡) =
𝑁

∑
𝑘=−𝑁

𝑎𝑘(𝑡) exp(𝑖𝑘𝑥) . (2.2)

The time dependence is completely contains within the coefficients 𝑎𝑛(𝑡), which deter‐
mine the solution. The number of modes used in the approximation, 2𝑁 +1, controls the
accuracy of the method, and can be thought to be like the number of grid points in a finite
difference method.

The series expansion substituted into the advection equation (Equation 2.1) gives

14



𝑁
∑

𝑘=−𝑁
{d𝑎𝑘

d𝑡 + 𝑖𝑘𝑢𝑎𝑘} exp(𝑖𝑘𝑥) = 0. (2.3)

In the simplest case where 𝑢 is a constant, the orthogonality of the complex exponentials
decouples all the modes to leave the ordinary differential equations

d𝑎𝑘
d𝑡 + 𝑖𝑘𝑢𝑎𝑘 = 0. (2.4)

This can be solved explicitly and exactly giving 𝑎𝑘 = 𝑎𝑘(0) exp(−𝑖𝑘𝑢𝑡). We therefore
have the approximate solution

𝜙(𝑥, 𝑡) =
𝑁

∑
𝑘=−𝑁

𝑎𝑘(0) exp[𝑖𝑘(𝑥 − 𝑢𝑡)] . (2.5)

This solution has no dispersion error (all information propagates exactly at speed 𝑢) and
its amplitude is constant. The error comes from projecting the exact initial data onto the
basis functions, using a truncated series. This can have odd effectswhen𝑁 is small ‐ strictly
positive functions can appear to go negative ‐ but for smooth data these problems converge
very rapidly (as Fourier series approximations converge rapidly).

2.2 Non-uniform advection

With finite difference and finite volume methods moving to non‐uniform and nonlinear
problems is “straightforward”, although their numerical analysis can be difficult. For ex‐
ample, if the advection velocity 𝑢 is not constant so that 𝑢 = 𝑢(𝑥), the standard FTBS
method (as seen earlier) is directly written as

𝜙𝑛+1
𝑗 = 𝜙𝑛

𝑗 − 𝑢𝑗 Δ𝑡
Δ𝑥 (𝜙𝑛

𝑗 − 𝜙𝑛
𝑗−1) . (2.6)

The only change to the standard FTBS scheme is that the advection velocity is now evalu‐
ated at the update point, 𝑢𝑗 = 𝑢(𝑥𝑗). The CFL limit constraining the timestep now needs
to maximize over all points 𝑥𝑗, or equivalently over all advection velocities 𝑢𝑗.
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The spectralmethod, however, nowbecomesmarkedlymore complex. As𝑢 varies in space
we need to represent it by Fourier series expansion as well, as (for example)

𝑢(𝑥) =
𝑁

∑
𝑙=−𝑁

𝑢𝑙 exp(𝑖𝑙𝑥) . (2.7)

When we substitute the series expansions for both the solution and the advection velocity
into the advection equation we get

𝑁
∑

𝑘=−𝑁
{d𝑎𝑘

d𝑡 + 𝑖𝑘𝑎𝑘
𝑁

∑
𝑙=−𝑁

𝑢𝑙 exp(𝑖𝑙𝑥)} exp(𝑖𝑘𝑥) = 0. (2.8)

When we use orthogonality we find

d𝑎𝑘
d𝑡 + 𝑖 ∑

𝑘+𝑙=𝑁
|𝑘|,|𝑙|≤𝑁

𝑘𝑎𝑘𝑢𝑙 = 0 . (2.9)

This couples different modes (different values of 𝑘). We can no longer solve this ordinary
differential equation exactly; instead we have to use some time differencing method to
compute the result.

The results of applying a spectral method to non‐constant advection can be seen in Fig‐
ure 2.1. The left panel shows the solution after “half a period”, which is extremely well
captured even with very few modes used (look at the solution near the right edge for the
largest discrepancies). The convergence plot in the right panel is the key result, however.
It shows how the error converges exponentially, which is far faster than any finite differ‐
encing scheme (which converges polynomially) can manage.

2.3 Problems and solutions

The fundamental lesson of spectral methods for complex, nonlinear systems is given by
Equation 2.9. That is, the approximate solution is updated by coupling every mode of the
solution at the current time. This leads to extremely high accuracy but is associated with

16



0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

High accuracy
6 modes
8 modes

5.0 7.5 10.0 12.5 15.0
Number of modes

10 6

10 5

10 4

10 3

10 2

10 1

100

|E
rro

r| 2

Errors
(N 1)
(N 2)
(e 1.23N)

Figure 2.1: A spectral method advects the initial data sin4(2𝜋𝑥) around the domain 𝑥 ∈
[0, 1] up to 𝑡 = 0.5. Fourier modes 𝑐𝑛 = −𝑁, … , 𝑁 are used. Spectral
(exponential) convergence with the number of modes is seen. It is also clear
that this is much faster than first or second order convergence as indicated on
the right panel.
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high costs. In particular, there are 𝒪(𝑁) ordinary differential equations of the form (Equa‐
tion 2.9) that need to be solved, and each requires𝒪(𝑁) terms to be evaluated within the
sum, so each timestep costs 𝒪(𝑁2). For large numbers of coefficients this is much more
expensive that a finite difference scheme.

Some of these costs can be ameliorated by performing the nonlinear (or non‐uniform) cal‐
culations in position space rather than frequency space. That is, the terms in the product
𝑢𝜕𝑥𝜙 can be Fourier transformed back to position space, multiplied, and then transformed
back. This is cheaper, reducing the cost to 𝒪(𝑁 log𝑁). This idea is linked to spectral col‐
locationmethods.

A related problem caused by all modes coupling is that of accuracy. When a mode with
wavenumber𝑁 couples to anothermodewith wavenumber𝑁 then the true result should
be a non‐trivial evolution of the mode with wavenumber 2𝑁 . However, our truncated
series approximation does not allow for this information to be captured. The information
lost due to the nonlinear interactions at high wavenumber can have significant impacts,
and particular techniques are needed to adjust for it. One standard method is to only use
2/3 of the coefficients when calculating the update terms. This (additionally) truncated
approximation avoids aliasing problems due to the interactions.

Another, sometimes critical, problem, is related to the use of a single function basis expan‐
sion over the entire domain. In the example above we used a Fourier series on a periodic
domain to represent the function 𝜙. However, when the function 𝜙 is discontinuous, it is
well known that the Fourier series suffers from Gibbs oscillations. That is, the truncated
Fourier series representation will oscillate (over‐ and under‐shoot) around the discontinu‐
ity, and that the maximum error will not converge as the number of terms in the series
increases. There is a lot of literature trying to make spectral methods work with discontin‐
uous solutions, but in general it is not worth the effort: finite volume methods are more
efficient for these problems.

Whilst Durran (2010) gives an excellent introduction to spectral‐type methods specifically
for climate modelling, Boyd (2001) is the indespensable reference for spectral methods in
general.
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3 Finite Elements

We have seen that approximating a PDE using finite differences is straightforward (which
both helps a human to implement it, and a computer to solve it very efficiently). However,
we have also seen that the errors introduced can be both larger than we want and difficult
to control, introducing unphysical effects (incorrectwavepropagation, loss ofmonotonicity,
loss of positivity, etc).

We also saw that high accuracy can be maintained by using spectral methods, linked to an
approximation of the unknowns in terms of a series expansion of known functions (such as
a Fourier series). However, these have problems near steep gradients (spectral ringing or
Gibbs oscillations) which can again produce unphysical effects. They also couple every data
point in the domain, which makes them less straightforward and more computationally
expensive.

Finally, we saw through finite volume methods how general unstructured grids could be
used, and how a suitable choice of how to represent the function some key features (con‐
servation of mass, monotonicity) can be preserved. These schemes are more complex but
still only couple a limited number of points. The methods introduced so far have relatively
low orders of accuracy.

Our aimhere is to discussfinite elementmethods. These have the flexibility of finite volume
methods whilst (in principle) both allowing for high order (even spectral) accuracy and also
allowing for key physical properties beingmaintained. They are necessarilly more complex,
so we need to spend more time discussing the background theory of the mathematics and
the software engineering of the implementation.

In a finite element method the domain is split into elements which are (in most ways) in‐
distinguishable from finite volume cells. In finite element methods there is no expectation
that the elements and their edges and nodeswhich bound the elements have any structure
to them.

The notation in this section largely follows (Hughes 2012).
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3.1 One dimension, time independent

Take the advection‐diffusion equation describing the motion of pollution concentration
with a source of pollution, (Equation 1.4),

𝐷Ψ
𝐷𝑡 = 𝜕Ψ

𝜕𝑡 + u ⋅ ∇Ψ = 𝑆 + 𝜇Ψ∇2Ψ. (3.1)

For now we will restrict to one spatial dimension and look for the steady state solution
where the pollution generated by the source 𝑆 is balanced by the diffusion term with co‐
efficient 𝜇Ψ = 𝜇, assuming that the wind velocity vanishes. We will also absorb the value
of the diffusion coefficient 𝜇 into the source 𝑆. Therefore the equation to solve is

0 = 𝑆 + 𝜕𝑥𝑥Ψ. (3.2)

To be concrete we will assume that the domain on which we are solving is 𝑥 ∈ [0, 1], that
the amount of pollution at the left boundary is fixed, and that the flux of pollution at the
right boundary is also fixed,

Ψ(0) = 𝛼, 𝜕𝑥Ψ|𝑥=1 = 𝛽. (3.3)

3.2 Boundary conditions

As finite elementmethods are designed to work on complex domains with complex bound‐
aries, the boundary conditions are built in at the mathematical level. We need to consider
the different types separately.

We remove the Dirichlet boundary condition (here at 𝑥 = 0) by writing

Ψ(𝑥) = 𝜓(𝑥) + 𝑞(𝑥), (3.4)

where 𝑞(𝑥) is a known function chosen so that 𝑞(0) = 𝛼. That means that 𝜓(0) = 0,
and 𝜓 satisfies homoegeneous boundary conditions. We will solve for 𝜓 and then put the
boundary condition back in later. This can either be done globally (by making 𝑞 a constant,
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or non‐zero eveywhere), or locally (by making 𝑞 non‐zero only in a small region). The local
approach is standard.

Neumann boundaries, however, are built into the way the method works.

3.3 Weak form

Now we want to remove the second derivatives from the problem, as it is easier to reason
about first derivatives alone. When working with finite volumes we saw that we could
remove derivatives by integrating over the domain. However, we then ended up working
with volume averaged quantities. To keep our steps more general, we first multiply by an
arbitrary, smooth function𝑤(𝑥), and then integrate over the domain. As we already know
the value of the solution at the left boundary due to the Dirichlet boundary condition, we
can weight its value there to zero by enforcing 𝑤(0) = 0.
The function 𝑤(𝑥) is referred to as the weighting function. Using integration by parts the
steady state advection diffusion equation becomes

0 = [𝑤(𝑥)𝜕𝑥Ψ(𝑥)]10 − ∫
1

0
𝜕𝑥Ψ(𝑥)𝜕𝑥𝑤(𝑥) d𝑥

+ ∫
1

0
𝑤(𝑥)𝑆(𝑥) d𝑥.

(3.5)

We introduce the “inner product” notation

(𝑓, 𝑔) = ∫
1

0
𝑓(𝑥)𝑔(𝑥) d𝑥 (3.6)

and use the boundary conditions to give

(𝜕𝑥𝜓, 𝜕𝑥𝑤) = 𝑤(1)𝛽 − (𝜕𝑥𝑞, 𝜕𝑥𝑤) + (𝑤, 𝑆). (3.7)

This is the weak form of the equations. It is written in this fashion as the unknown term
(𝜓(𝑥)) is on the left hand side, but all terms on the right are either known (𝛽, 𝑞, 𝑆) or
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arbitrary (𝑤). It can be proved that solutions of the strong form in (Equation 3.2) are also
solutions of (Equation 3.7).

3.4 Function representation

In finite volume methods the domain is split into cells, or volumes, within which Ψ is pre‐
sented by a single number (its volume average). In finite element methods the domain is
split into elements, which in many ways are indistinguishable from volumes, within which
Ψ and any other function is represented in terms of a series expansion. For example, we
could choose within each element to represent Ψ as a (truncated) Fourier series, or Taylor
series.

However, for practical purposes, we want to link the representations in neighbouring ele‐
ments, but decouple the representations in elements that are not neighbours. To do this,
we introduce shape or basis functions which are associated with the nodes of the grid.

Tomake this concrete, take our domain𝑥 ∈ [0, 1] and split it into twoelements 𝐼0 = [0, 1
2 ]

and 𝐼1 = [1
2 , 1]. The boundaries of the elemnts give us the three nodes {𝑥𝐴} = {0, 1

2 , 1}.
Here𝐴 is a label ‐ an integer labelling the nodes ‐ whichwe count from 0 (so𝐴 ∈ {0, 1, 2}).
We then write the function of interest, 𝜓, as

𝜓(𝑥) = ∑
𝐴

𝜓𝐴𝑁𝐴(𝑥), (3.8)

where 𝑁𝐴(𝑥) are the shape functions.

We choose 𝑁𝐴(𝑥) to take the value 1 at node 𝑥𝐴 and take the value 0 at any other node.
This immediately means that 𝜓𝐴 = 𝜓(𝑥𝐴). Therefore the nodal values behave much like
a finite difference representation.

We immediately note that our (approximate) solution process must compute, somehow,
the values of 𝜓𝐴. Some are already known: the boundary condition at 𝑥 = 0 in our
case immediately implies that 𝜓0 = 0. The other values must be fixed by the solution of
(Equation 3.7).

There are now many choices we can make to fix the shape functions. The simplest is to
choose the shape functions to be piecewise linear. This gives
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𝑁0(𝑥) = {1 − 2𝑥 0 ≤ 𝑥 ≤ 1/2
0 1/2 ≤ 𝑥 ≤ 1

𝑁1(𝑥) = {2𝑥 0 ≤ 𝑥 ≤ 1/2
2 − 2𝑥 1/2 ≤ 𝑥 ≤ 1

𝑁2(𝑥) = {0 0 ≤ 𝑥 ≤ 1/2
2𝑥 − 1 1/2 ≤ 𝑥 ≤ 1

(3.9)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

N0
N1
N2

Figure 3.1: Shape functions for a domain with two elements (hence three nodes).

We now make the Galerkin assumption that the same function basis expansion is used for
the unknown function 𝜓 and also for the test function 𝑤. We write out 𝑤 and 𝑞 using the
same shape functions. As noted above we enforce that 𝑞 drops immediately to zero away
from the boundary, which means we write
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𝑞(𝑥) = 𝛼𝑁0(𝑥). (3.10)

This means the weak form (Equation 3.7) becomes

∑
𝐵

𝑤𝐵 ∑
𝐴

𝜓𝐴(𝜕𝑥𝑁𝐴, 𝜕𝑥𝑁𝐵) = 𝑤𝑁elements
𝛽−

𝛼 ∑
𝐵

𝑤𝐵(𝜕𝑥𝑁0, 𝜕𝑥𝑁𝐵) + ∑
𝐵

𝑤𝐵(𝑁𝐵, 𝑆).
(3.11)

This has to be true for any choice of weight function𝑤, so for any choice of the coefficients
𝑤𝐵. We gather terms as

∑
𝐵

𝑤𝐵 {∑
𝐴

𝐾𝐴𝐵𝜓𝐴 − 𝐹𝐵} = 0. (3.12)

To hold for any choice of weight function the term in curly brackets must vanish. Here the
stiffness matrix 𝐾 and force vector F are independent of𝜓. The steps here are very similar
to those in the implicit finite difference methods such as BTCS. This gives

𝐾𝝍 = F, (3.13)

where the coefficients of the stiffness matrix 𝐾 are given by

𝐾𝐴𝐵 = ∫
1

0
𝜕𝑥𝑁𝐴(𝑥)𝜕𝑥𝑁𝐵(𝑥) d𝑥 (3.14)

and the coefficients of the force vector F are given by

𝐹𝐵 = 𝛽𝛿𝑁elements
𝐵 + ∫

1

0
𝑁𝐵(𝑥)𝑆(𝑥) d𝑥 − 𝛼 ∫

1

0
𝜕𝑥𝑁0(𝑥)𝜕𝑥𝑁𝐵(𝑥) d𝑥. (3.15)

Here 𝛿𝐶
𝐵 is the Kronecker delta (zero except when 𝐵 ≡ 𝐶 , where it is one) and encodes

the Neumann boundary value.

Note that the final term in the force vector (which results from the Dirichlet boundary con‐
dition) has a very similar form to the entries of the stiffness matrix. However, the shape
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function 𝑁0 is non‐zero at the boundary of the domain, which can cause issues with di‐
rectly using the stiffness matrix here. For that, and other reasons, it is best to use the
element viewpoint below.

Exercise 3.1.

1. Compute (analytically) the coefficients of the stiffness matrix given the shape func‐
tions above in (Equation 3.9).

2. Compute (analytically) the coefficients of the force vector when 𝑆(𝑥) = 1 − 𝑥.
3. Solve (numerically) for 𝜓𝐴 and plot the resulting solution for 𝜓(𝑥). In the simplified

case 𝛼 = 0 = 𝛽 we can choose 𝑞(𝑥) ≡ 0, so that Ψ = 𝜓. Compare against the
exact solution Ψ(𝑥) = 𝑥(𝑥2 − 3𝑥 + 3)/6.

3.5 The element viewpoint

This works surprisingly well given the small number of elements and associated nodes.
However, as the sources get more complex we will need to work with more elements to
improve accuracy. We need to go about this more systematically.

First we note that in any element there are only two shape functions that are not zero. In
the notation we have used so far element 𝐼𝐴 = [𝑥𝐴, 𝑥𝐴+1] and the two non‐zero shape
functions have been 𝑁𝐴 and 𝑁𝐴+1.

Second, we note that in general the elementswill have different sizes. In higher dimensions
this gets ever more complicated. However, by using a coordinate transformation, we can
take any element from the interval [𝑥𝐴, 𝑥𝐴+1] to the interval 𝜉 ∈ [−1, 1]. We have

𝜉(𝑥) = 2𝑥 − 𝑥𝐴 − 𝑥𝐴+1
𝑥𝐴+1 − 𝑥𝐴

,

𝑥(𝜉) = (𝑥𝐴+1 − 𝑥𝐴)𝜉 + 𝑥𝐴 + 𝑥𝐴+1
2 .

(3.16)

We can now write the two non‐zero shape functions in terms of the reference coordinates
𝜉 as

𝑁𝑎(𝜉) = 1
2(1 + 𝜉𝑎𝜉), 𝑎 = 1, 2. (3.17)
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The label𝑎 is labelling the shape functionswithin the reference element, written in termsof
the reference coordinates. These labels can be linked back to the original shape functions
in the end.

Now, we remember that the weak form is written in terms of the stiffness matrix and force
vector, and these depend on integrals of the shape functions and their derivatives. Com‐
puting the derivatives in the reference coordinates is straightforward,

𝜕𝜉𝑁𝑎 = (−1)𝑎

2 . (3.18)

To map this back to derivatives in the original coordinates we require a Jacobian, which
needs the derivatives of the coordinate transformation. This needs

𝜕𝑥𝜉 = 2
𝑥𝐴+1 − 𝑥𝐴

,

𝜕𝜉𝑥 = 𝑥𝐴+1 − 𝑥𝐴
2 .

(3.19)

We can now compute the contribution that one single element 𝑒 = 𝐼𝐴 makes. This is

𝑘𝑒
𝑎𝑏 = ∫

𝑥𝐴+1

𝑥𝐴

𝜕𝑥𝑁𝑎𝜕𝑥𝑁𝑏 d𝑥

= ∫
1

−1
𝜕𝜉𝑥𝜕𝑥𝑁𝑎𝜕𝑥𝑁𝑏 d𝜉

= ∫
1

−1
(𝜕𝜉𝑥)−1 𝜕𝜉𝑁𝑎𝜕𝜉𝑁𝑏 d𝜉

= (−1)(𝑎+𝑏)

𝑥𝐴+1 − 𝑥𝐴
.

(3.20)

This is incredibly useful: there’s no need to do any integrals at all. Note that this gives a
2 × 2 matrix corresponding to a single element: to get the complete stiffness matrix we
need to “add all these up”.

The element force vector is, in general, more complex, as it involves an integral over the
complex source 𝑆. However, we can approximate this by writing the source in terms of its
values at the nodes as well, so
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𝑆(𝑥) = ∑
𝑎

𝑆𝑎𝑁𝑎(𝑥), (3.21)

giving 𝑆𝑎 = 𝑆(𝑥(𝜉𝑎)). We can then compute, for the simple shape functions we use
here,

𝑓𝑒
𝑎 = 𝑥𝐴+1 − 𝑥𝐴

6 (2𝑆1 + 𝑆2
𝑆1 + 2𝑆2

) . (3.22)

Finally, we need to include the boundary condition terms in the force vector. To include
the Neumann boundary condition at the right boundary we adjust the final entry,

𝐹𝑁elements
→ 𝐹𝑁elements

+ 𝛽. (3.23)

To include the Dirichlet boundary condition at the left boundary we adjust the first entry,
which needs adjusting using ∫ 𝜕𝑥𝑁0𝜕𝑥𝑁𝐵. For the linear shape functions chosen here
this is only non‐zero within the first element, so we can use the local stiffness matrix to
adjust the first entry,

𝐹0 → 𝐹0 − 𝛼𝑘0
12. (3.24)

(Note that the numbering here has the first element number 𝑒 = 0 and the local labels
𝑎 ∈ {1, 2})

3.5.1 Neumann boundary conditions

The correction term for Neumann boundary conditions is the easier case to check. As‐
sume that 𝑥𝐶 is the node on the Neumann obundary (above 𝑥𝐶 = 𝑥𝑁𝑒

= 1), and that
𝜕𝑥𝜓(𝑥𝑁𝑒

) = 𝛽. Then we have
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∫
1

0
𝑤𝜕𝑥𝑥𝜓 = [𝑤𝜕𝑥𝜓]10 − ∫

1

0
𝜕𝑥𝑤𝜕𝑥𝜓

= 𝑤(1)𝛽 − (𝑤𝜕𝑥𝜓)(0) − ∫
1

0
𝜕𝑥𝑤𝜕𝑥𝜓

= − ∫
1

0
𝑤𝑆 .

Using the standard function basis expansion we have

𝑤𝑁𝑒
𝛽 − 𝑤0𝜓0(𝜕𝑥𝑁0)(0) − ∑

𝐵
𝑤𝐵 ∑

𝐴
𝜓𝐴 ∫

1

0
𝜕𝑥𝑁𝐵𝜕𝑥𝑁𝐴 = − ∑

𝐵
𝑤𝐵 ∫

1

0
𝑁𝐵𝑆

⟹ 𝐾𝐴𝐵𝜓𝐴 = 𝐹𝐵 ,

𝐹𝑁𝑒
= ∫

1

0
𝑁𝑁𝑒

𝑆 − 𝛽 .

That is, the standard force vector term on the Neumann boundary is corrected by the value
of the Neumann boundary condition. We also note that the value at the left boundary is
linked to 𝑤0 and hence to 𝜓0, which is not included in the vector to be solved (as it lies on
a Dirichlet boundary).

3.5.2 Dirichlet boundary conditions

The correction term for Dirichlet boundary conditions may not be obvious. This is a bit
more annoying to construct as the solution is not computed at the boundary node where
the Dirichlet condition holds. That is because each node we have to compute increases
the size of the linear system, making it harder and more expensive to solve. Instead we
want to incorporate the effect of the boundary condition at a given node into the system
through its impact on its neighbours.

We do this by a standard trick seen in the solution of PDEs with inhomogeneous boundary
conditions: change variable to a variable that satisfies a similar PDE but with homogeneous
boundary conditions. We can do this in many ways, but in finite elements, when using
shape functions, there is one particularly neat choice.
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Assume that 𝑥𝐶 is the node on the Dirichlet boundary (above 𝑥𝐶 = 𝑥0 = 0), and that
𝜓(𝑥𝐶) = 𝜓𝐶 = 𝛼. Choose 𝜙(𝑥) = 𝜓(𝑥) − 𝛼𝑁𝐶(𝑥). As 𝑁𝐶 is an indicator function
(so is one at the node 𝑥𝐶 and zero at all other nodes) we have that 𝜙(𝑥𝐶) = 𝜙𝐶 = 0
and 𝜙(𝑥𝐴) = 𝜓(𝑥𝐴) on all nodes not on that particular Dirichlet boundary. Therefore 𝜙
satisfies a homogeneous Dirichlet boundary condition, and matches the solution that we
want at all interior points. It also does not interfere with the other boundary condition
(unless we are working with a single element!).

We need to check the impact this has on the discrete equation. Focus on 𝑥𝐶 = 𝑥0 = 0;
the argument is identical for other cases. We have

∫
1

0
𝑤𝜕𝑥𝑥𝜓 = ∫

1

0
𝑤𝜕𝑥𝑥𝜙 + 𝛼 ∫

1

0
𝑤𝜕𝑥𝑥𝑁0

= [𝑤𝜕𝑥𝜙]10 − ∫
1

0
𝜕𝑥𝑤𝜕𝑥𝜙+

𝛼 [𝑤𝜕𝑥𝑁0]10 − 𝛼 ∫
1

0
𝜕𝑥𝑤𝜕𝑥𝑁0

= − ∫
1

0
𝑤𝑆 .

Plugging in the usual basis function expansions and moving the terms to the conventional
places we find

∑
𝐵

𝑤𝐵 ∑
𝐴

𝜙𝐴𝐾𝐴𝐵 = ∑
𝐵

𝑤𝐵{ ∫
1

0
𝑁𝐵𝑆−

− [𝑁𝐵 ∑
𝐴

𝜙𝐴𝜕𝑥𝑁𝐴] (0) + 𝛼 [𝑁𝐵𝜕𝑥𝑁0] (0)−

− 𝛼 ∫
1

0
𝜕𝑥𝑁𝐵𝜕𝑥𝑁0} .

We see that the first line gives the standard 𝐾𝝓 = 𝐅 form. The last line is precisely the
correction using the element 𝐾𝐵0 of the stiffness matrix. In principle this correction is
applied to every element of the force vector; however, only when 𝑁𝐵 and 𝑁0 overlap
(that is, only when 𝑥𝐵 is next to the Dirichlet boundary node 𝑥0) is the overlap integral
non‐zero.
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The second line cancels identically. This is because the terms are all evaluated at 𝑥 =
0. The only non‐zero contributions can come from the case 𝐵 = 0 (as otherwise the
undifferentiated indicator function 𝑁𝐵 vanishes), which would modify a term that is not
included in the force vector.

Hence we get the expected result: if element 𝑒 contains a (global) node 𝐴 that lies on a
Dirichlet boundary, then the force vector at all other nodes 𝐵 within the element must be
corrected by −𝜓(𝑥𝐴)𝐾𝐴𝐵.

3.6 Linking elements to equations

Our goal is to construct a linear (matrix) equation to give us the solution 𝜓𝐴 at all nodes
𝐴 where it isn’t enforced by the boundary conditions (which, in the example so far, is all
nodes except the left‐hand boundary). We note that each interior node is linked to two
elements, so contributions from the element matrix will affect more than one equation.

To keep track of this, we construct the location matrix or location array 𝐿𝑀 which, given
the node number 𝑎 ∈ {1, 2} and the element number 𝑒 returns the associated equation
number.

Any node that is not to be included (as its value is given by a Dirichlet boundary condition)
has its associated equation number 𝐴 set to −1. The first node that must be included
is given value 0. We then go element‐by‐element: the left‐hand node of element 𝑒 is the
same as the right‐hand node of element 𝑒−1, so picks up the same equation number. The
right‐hand node of element 𝑒, if considered, then has equation number one higher than
the left‐hand node of that element. This translates directly into Python code:

N_elements = 4 # for example

LM = np.zeros((2, N_elements), dtype=np.int64)

for e in range(N_elements):

if e==0:

# Treat first element differently due to BC

LM[0, e] = -1 # Left hand node of first element

# is not considered thanks to BC.

LM[1, e] = 0 # the first equation
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else:

# Left node of this element is

# right node of previous element

LM[0, e] = LM[1, e-1]

LM[1, e] = LM[0, e] + 1

Now the global stiffness matrix and force vector can be assembled: for each element 𝑒 we
construct the element 𝑘𝑒

𝑎𝑏 and 𝑓𝑒
𝑏 and add the appropriate components, as

𝐾𝐿𝑀(𝑎,𝑒) 𝐿𝑀(𝑏,𝑒) = 𝐾𝐿𝑀(𝑎,𝑒) 𝐿𝑀(𝑏,𝑒) + 𝑘𝑒
𝑎𝑏 𝑎, 𝑏 ∈ {1, 2},

𝑓𝐿𝑀(𝑏,𝑒) = 𝑓𝐿𝑀(𝑏,𝑒) + 𝑓𝑒
𝑏 𝑏 ∈ {1, 2}.

Note that we need one more structure to keep track of the boundary conditions. As noted
above, if a node is on a boundary then the value of the force vector needs modifying, ei‐
ther by including its value directly (in the case of a Neumann boundary) or by using some
appropriate multiple of the local stiffness matrix (in the case of a Dirichlet boundary). This
structure must map the node number to the value in the boundary condition; the location
matrix can be used to check the boundary condition type.

3.7 Algorithm

This gives our full algorithm:

1. Set the number of elements 𝑁elements.
2. Set node locations 𝑥𝐴, where 𝐴 = 0, … , 𝑁elements.
3. Set up the location matrix 𝐿𝑀 .
4. Set up a boundary value structure (in Python a dictionary would work).
5. Set up arrays, initially all zero, for the global stiffnessmatrix (size𝑁elements×𝑁elements)

and for vector (size 𝑁elements).
6. For each element:

1. Form the element stiffness matrix 𝑘𝑒
𝑎𝑏.

2. Form the element force vector 𝑓𝑒
𝑏 .

3. Add the contributions to the global stiffness matrix and force vector.
4. Modify using the boundary values if needed.
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7. Solve 𝐾𝝍 = F.

Exercise 3.2. Write a finite element solver for the problem above, as a function that takes
as input the number of elements and the source function𝑆, as well as the boundary condi‐
tions𝛼, 𝛽. It should use a uniformly spaced grid, and return the nodes𝑥𝐴 and the solution
at the nodes Ψ𝐴 = 𝜓𝐴 + 𝑞𝐴.

Check that the function returns the same result as above when used with two elements
and 𝑆(𝑥) = 1 − 𝑥.
The apply the solver to the case 𝑆(𝑥) = (1 − 𝑥)2 with exact solution Ψ(𝑥) = 𝑥(4 −
6𝑥 + 4𝑥2 − 𝑥3)/12. Compute the 2‐norm of the error and check how it converges with
resolution.

Finally check that the solver works on the case

𝑆(𝑥) = {1 |𝑥 − 1
2 | < 1

4 ,
0 otherwise

(3.25)

with boundary conditions

𝛼 = Ψ(0) = 0.1, 𝛽 = 𝜕𝑥Ψ(1) = −0.2. (3.26)

The exact solution in this case is

Ψ =
⎧{{
⎨{{⎩

0.3𝑥 + 0.1 𝑥 < 1
4

−1
2𝑥2 + 0.55𝑥 + 11

160
1
4 < 𝑥 < 3

4
−0.2𝑥 + 0.35 𝑥 > 3

4

. (3.27)

Tip

It will be useful for later purposes to write helper functions that compute the global
coordinates from the reference coordinates, and compute the elementsmatrices and
vectors from the nodes.
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4 Two dimensions

We’ve looked at the problem of finding the steady state solution of pollution diffusing in
one dimension. Now let’s move on to finding the distribution in two dimensions. From this
the generalisation to higher dimensions is “straightforward”.

The steady state pollution distribution Ψ(𝑥, 𝑦) in cartesian coordinates satisfies

∇2Ψ + 𝑆(x) = (𝜕𝑥𝑥 + 𝜕𝑦𝑦) Ψ + 𝑆(x) = 0. (4.1)

We’ll fix the distribution to be zero at the left edge, Ψ(0, 𝑦) = 0. We’ll allow pollution to
flow out of the other edges, giving the boundary conditions on all edges as

Ψ(0, 𝑦) = 0, 𝜕𝑥Ψ(1, 𝑦) = 0,
𝜕𝑦Ψ(𝑥, 0) = 0, 𝜕𝑦Ψ(𝑥, 1) = 0.

(4.2)

Once again we want to write down the weak form by integrating by parts. To do that we
rely on the divergence theorem,

∫
Ω
dΩ ∇𝑖Ψ = ∫

Γ
dΓ Ψ𝑛𝑖. (4.3)

HereΩ is the domain (which in our problem is the square,𝑥, 𝑦 ∈ [0, 1]) andΓ its boundary
(in our problem the four lines 𝑥 = 0, 1 and 𝑦 = 0, 1), whilst n is the (inward‐pointing)
normal vector to the boundary.

We thenmultiply the strong formof the steady state equation by aweight function𝑤(𝑥, 𝑦)
and integrate by parts, using the divergence theorem, to remove the second derivative. To
enforce the boundary conditions effectively we again choose the weight function to vanish
where the value of the temperature is explicitly given, i.e. 𝑤(0, 𝑦) = 0. That is, we split
the boundary Γ into a piece Γ𝐷 where the boundary conditions are in Dirichlet form (the
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valueΨ is given) and a pieceΓ𝑁 where the boundary conditions are in Neumann form (the
value of the normal derivative 𝑛𝑖∇𝑖𝑇 is given). We then enforce that on Γ𝐷 the weight
function vanishes.

For our problem, this gives

∫
Ω
dΩ ∇𝑖𝑤∇𝑖Ψ = ∫

Ω
dΩ 𝑤𝑆. (4.4)

Re‐writing for our explicit domain and our Cartesian coordinates we get

∫
1

0
d𝑦 ∫

1

0
d𝑥 (𝜕𝑥𝑤𝜕𝑥Ψ + 𝜕𝑦𝑤𝜕𝑦Ψ) = ∫

1

0
d𝑦 ∫

1

0
d𝑥 𝑤(𝑥, 𝑦)𝑆(𝑥, 𝑦). (4.5)

This should be compared to the one dimensional case

∫
1

0
d𝑥 𝜕𝑥𝑤(𝑥)𝜕𝑥Ψ(𝑥) = ∫

1

0
d𝑥 𝑤(𝑥)𝑆(𝑥). (4.6)

We can now envisage using the same steps as the one dimensional case. Split the domain
into elements, represent all functions in terms of known shape functions on each element,
assemble the problems in each element to a single matrix problem, and then solve the
matrix problem.

4.1 Elements

We now need to split the domain into subdomains ‐ elements. Constructing a good grid
for a general case is a hard problem for which there are many complex solvers available. In
our case we are going to use one simple approach: triangulate the domain by using equal
sized triangles.

What we’re doing here is

1. Providing a list of nodes by their global coordinates.
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Figure 4.1: The square domain split into triangular elements. Red dots are the nodes. Red
squares contain the element numbers. Green squares contain the global node
numbers. Blue squares contain the local node numbers, with the associated
element number as subscript.
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2. Providing the (integer) element node array IEN which says how the elements are
linked to the nodes.

We have that for element 𝑒 and local node number 𝑎 = 0, 1, 2 the global node number is
𝐴 = 𝐼𝐸𝑁(𝑒, 𝑎). This notation is sufficiently conventional that matplotlib recognizes
it with its triplot/tripcolor/trisurf functions. In this case we have

IEN = np.array([[0, 1, 2],

[1, 3, 2]])

which says that the first element (element 0) is made of the (global) nodes numbered 0, 1,
and 2, which the second element (element 1) is made of the (global) nodes numbered 1,
3, and 2. It is convention that the nodes are ordered in the anti‐clockwise direction as the
local number goes from 0 to 2.

The plot shows the

• element numbers in the red boxes
• the global node numbers in the green boxes
• the local element numbers in the blue boxes (the subscript shows the element num‐

ber).

We will need one final array, which is the 𝐼𝐷 or (integer) destination array. This links the
global node number to the global equation number in the final linear system. As the order
of the equations in a linear system doesn’t matter, this essentially encodes whether a node
should have any equation in the linear system. Any node on Γ𝐷, where the value of the
temperature is given, should not have an equation. In the example above the left edge is
fixed, so nodes 0 and 2 lie on Γ𝐷 and should not have an equation. Thus in our case we
have

ID = np.array([-1, 0, -1, 1])

In the one dimensional case we used the location matrix or 𝐿𝑀 array to link local node
numbers in elements to equations. With the 𝐼𝐸𝐷 and 𝐼𝐷 arrays the𝐿𝑀 matrix is strictly
redundant, as 𝐿𝑀(𝑎, 𝑒) = 𝐼𝐷(𝐼𝐸𝑁(𝑒, 𝑎)). However, it’s still standard to construct
it:
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LM = np.zeros_like(IEN.T)

for e in range(IEN.shape[0]):

for a in range(IEN.shape[1]):

LM[a,e] = ID[IEN[e,a]]

LM

array([[-1, 0],

[ 0, 1],

[-1, -1]])

4.2 Function representation and shape functions

We’re going to want to write our unknown functions Ψ, 𝑤 in terms of shape functions.
These are easiest to write down for a single reference element, in the same way as we did
for the one dimensional case where our reference element used the coordinates 𝜉. In two
dimensions we’ll use the reference coordinates 𝜉1, 𝜉2, and the standard “unit” triangle
shown in (Figure 4.2).

The shape functions on this triangle are

𝑁0(𝜉1, 𝜉2) = 1 − 𝜉1 − 𝜉2,
𝑁1(𝜉1, 𝜉2) = 𝜉1,
𝑁2(𝜉1, 𝜉2) = 𝜉2.

(4.7)

The derivatives are all either 0 or ±1.
As soon as we have the shape functions, our weak form becomes

∑
𝐴

𝑇𝐴 ∫
Ω
dΩ (𝜕𝑥𝑁𝐴(𝑥, 𝑦)𝜕𝑥𝑁𝐵(𝑥, 𝑦) + 𝜕𝑦𝑁𝐴(𝑥, 𝑦)𝜕𝑦𝑁𝐵(𝑥, 𝑦)) =

∫
Ω
dΩ 𝑁𝐵(𝑥, 𝑦)𝑆(𝑥, 𝑦).

(4.8)

If we restrict to a single element the weak form becomes
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Figure 4.2: The standard reference triangle.
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∑
𝐴

𝑇𝐴 ∫
△
d△ (𝜕𝑥𝑁𝐴(𝑥, 𝑦)𝜕𝑥𝑁𝐵(𝑥, 𝑦) + 𝜕𝑦𝑁𝐴(𝑥, 𝑦)𝜕𝑦𝑁𝐵(𝑥, 𝑦)) =

∫
△
d△ 𝑁𝐵(𝑥, 𝑦)𝑆(𝑥, 𝑦).

(4.9)

We need to map the triangle and its (𝑥, 𝑦) = x coordinates to the reference triangle and
its (𝜉1, 𝜉2) = 𝝃 coordinates. We also need to work out the integrals that appear in the
weak form. We need the transformation formula

∫
△
d△ 𝜙(𝑥, 𝑦) = ∫

1

0
d𝜉2 ∫

1−𝜉2

0
d𝜉1 𝜙 (𝑥(𝜉1, 𝜉2), 𝑦(𝜉1, 𝜉2)) 𝑗(𝜉1, 𝜉2), (4.10)

where the Jacobian matrix 𝐽 is

𝐽 = [ 𝜕x
𝜕𝝃] = (𝜕𝜉1

𝑥 𝜕𝜉2
𝑥

𝜕𝜉1
𝑦 𝜕𝜉2

𝑦) (4.11)

and hence the Jacobian determinant 𝑗 is

𝑗 = det 𝐽 = det [ 𝜕x
𝜕𝝃] = det(𝜕𝜉1

𝑥 𝜕𝜉2
𝑥

𝜕𝜉1
𝑦 𝜕𝜉2

𝑦) . (4.12)

We will also need the Jacobian matrix when writing the derivatives of the shape functions
in terms of the coordinates on the reference triangle, i.e.

(𝜕𝑥𝑁𝐴 𝜕𝑦𝑁𝐴) = (𝜕𝜉1
𝑁𝐴 𝜕𝜉2

𝑁𝐴) 𝐽−1. (4.13)

The integral over the reference triangle can be directly approximated using, for example,
Gauss quadrature. To second order we have
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∫
1

0
d𝜉2 ∫

1−𝜉2

0
d𝜉1 𝜓 (𝑥(𝜉1, 𝜉2), 𝑦(𝜉1, 𝜉2)) ≃

1
6

3
∑
𝑗=1

𝜓 (𝑥(𝜉(𝑗)
1 , 𝜉(𝑗)

2 ), 𝑦(𝜉(𝑗)
1 , 𝜉(𝑗)

2 ))
(4.14)

where

𝜉(1)
1 = 1

6, 𝜉(1)
2 = 1

6,

𝜉(2)
1 = 4

6, 𝜉(2)
2 = 1

6,

𝜉(3)
1 = 1

6, 𝜉(3)
2 = 4

6.

(4.15)

Finally, we need to map from the coordinates 𝝃 to the coordinates x. This is straightfor‐
ward if we think of writing each component (𝑥, 𝑦) in terms of the shape functions. So for
element 𝑒 with node locations (𝑥𝑒

𝑎, 𝑦𝑒
𝑎) for local node number 𝑎 = 0, 1, 2 we have

𝑥 = 𝑥𝑒
0𝑁0(𝜉1, 𝜉2) + 𝑥𝑒

1𝑁1(𝜉1, 𝜉2) + 𝑥𝑒
2𝑁2(𝜉1, 𝜉2),

𝑦 = 𝑦𝑒
0𝑁0(𝜉1, 𝜉2) + 𝑦𝑒

1𝑁1(𝜉1, 𝜉2) + 𝑦𝑒
2𝑁2(𝜉1, 𝜉2).

(4.16)

4.3 Algorithm

The steps needed to solve this case closely follow the algorithm in one dimension. The
outline algorithm becomes

1. Set up the grid, including the mapping between elements and nodes (IEN) and be‐
tween elements and equations (ID).

2. Set up a boundary value structure (in Python a dictionary would work).
3. Set up the location matrix 𝐿𝑀 .
4. Set up arrays, initially all zero, for the global stiffness matrix and for vector.
5. For each element:

1. Form the element stiffness matrix 𝑘𝑒
𝑎𝑏.

2. Form the element force vector 𝑓𝑒
𝑏 .
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3. Add the contributions to the global stiffness matrix and force vector.
4. Modify using the boundary values if needed.

6. Solve 𝐾𝝍 = F.

The key difference is the complexity of mapping from a general element (triangle) to the
reference element (triangle) on which all the coefficients are known. The key steps are:

1. Write a function that, given 𝝃, returns that shape functions at that location.
2. Write a function that, given 𝝃, returns the derivatives of the shape functions at that

location.
3. Write a function that, given the (global) locations x of the nodes of a triangular el‐

ement and the local coordinates 𝝃 within the element returns the corresponding
global coordinates.

4. Write a function that, given the (global) locations x of the nodes of a triangular ele‐
ment and the local coordinates 𝝃, returns the Jacobian matrix at that location.

5. Write a function that, given the (global) locations x of the nodes of a triangular ele‐
ment and the local coordinates 𝝃, returns the determinant of the Jacobian matrix at
that location.

6. Write a function that, given the (global) locations x of the nodes of a triangular ele‐
ment and the local coordinates 𝝃within the element returns the derivatives𝜕x𝑁𝑎 =
𝐽−1𝜕𝝃𝑁𝑎.

7. Write a function that, given a function 𝜓(𝝃), returns the quadrature of 𝜓 over the
reference triangle.

8. Write a function that, given the (global) locations of the nodes of a triangular element
and a function 𝜙(𝑥, 𝑦), returns the quadrature of 𝜙 over the element.

9. Write a function to compute the coefficients of the stiffness matrix for a single ele‐
ment,

𝑘𝑒
𝑎𝑏 = ∫

△𝑒
d△𝑒 (𝜕𝑥𝑁𝑎(𝑥, 𝑦)𝜕𝑥𝑁𝑏(𝑥, 𝑦) + 𝜕𝑦𝑁𝑎(𝑥, 𝑦)𝜕𝑦𝑁𝑏(𝑥, 𝑦)) .

10. Write a function to compute the coefficients of the force vector for a single element,

𝑓𝑒
𝑏 = ∫

△𝑒
d△𝑒 𝑁𝑏(𝑥, 𝑦)𝑆(𝑥, 𝑦). (4.17)
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4.3.1 Boundary conditions

In principle, the application of boundary conditions in more than one dimension precisely
matches that seen in the one dimensional case. The practical implementation, as with all
things in higher dimensions, can be more complex.

For Dirichlet boundaries, if an element has a node on a boundary, then every node within
that element that is connected to the Dirichlet node needs updating using an appropriate
multiple of the local stiffness matrix. For example, suppose that global node 𝑥𝐶 is on the
Dirichlet boundary Γ𝐷 and the solution takes the value 𝛼 there. Further suppose that 𝑥𝐶
is mapped to local node 0 in the reference element. Finally, assume that the local node 𝑏
within the same element is not on the Dirichlet boundary (so must be solved for), and is
linked to global node 𝑥𝐵. Then the component of the force vector 𝐹𝐵 must be updated
by −𝛼𝑘(𝑒)

0𝑏 .

For Neumann boundary conditions, the force vector is directly updated using the value of
the boundary condition. However, in this case we have to note that the boundary contribu‐
tion involves the surface integral over Γ𝑁 (which will be a line integral in two dimensions).
Therefore the update to 𝐹𝐵 is not just the value 𝛽 = 𝜕𝑥𝜓(𝑥𝐵), but must also weight it
by the length of the edge within the element that lies in the Neumann boundary. Suppose
that 𝑥𝐵 and 𝑥𝐶 are both nodes of the same element, and that the edge connecting them
lies within the Neumann boundary, and that this edge has length ℓ. Using a mid‐point rule
approximation to the line integral along the edge, both 𝐹𝐵 and 𝐹𝐶 should be updated by
𝛽ℓ/2. Better approximations to the integral may be needed for accuracy reasons, and in
higher dimensions than two.

4.4 Grid generation

The final, essential, topic that has not been covered is how to generate a grid. Good grid
generators or meshers are generally hard (look at, for example, gmesh or dmsh for exam‐
ples): here is a very simple one for this specific problem.

def generate_2d_grid(Nx):

Nnodes = Nx+1

x = np.linspace(0, 1, Nnodes)

y = np.linspace(0, 1, Nnodes)
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X, Y = np.meshgrid(x,y)

nodes = np.zeros((Nnodes**2,2))

nodes[:,0] = X.ravel()

nodes[:,1] = Y.ravel()

ID = np.zeros(len(nodes), dtype=np.int64)

boundaries = dict() # Will hold the boundary values

n_eq = 0

for nID in range(len(nodes)):

if np.allclose(nodes[nID, 0], 0):

ID[nID] = -1

boundaries[nID] = 0 # Dirichlet BC

else:

ID[nID] = n_eq

n_eq += 1

if ( (np.allclose(nodes[nID, 1], 0)) or

(np.allclose(nodes[nID, 0], 1)) or

(np.allclose(nodes[nID, 1], 1)) ):

boundaries[nID] = 0 # Neumann BC

IEN = np.zeros((2*Nx**2, 3), dtype=np.int64)

for i in range(Nx):

for j in range(Nx):

IEN[2*i+2*j*Nx , :] = (i+j*Nnodes,

i+1+j*Nnodes,

i+(j+1)*Nnodes)

IEN[2*i+1+2*j*Nx, :] = (i+1+j*Nnodes,

i+1+(j+1)*Nnodes,

i+(j+1)*Nnodes)

return nodes, IEN, ID, boundaries

The results of using a more complex mesh generator (in this case dmsh) on a more com‐
plex domain, but still solving the heat equation using exactly the functions outlined in the
exercise below, is shown in (Figure 4.3).
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Figure 4.3: A more complex grid generated by dmsh for a more general polygonal domain.
The heat equation is solved with a Gaussian source. The boundary at 𝑥 = 0 is
held fixed at Ψ = 0. All other boundaries use Neumann boundary conditions
where the flux vanishes. The function that solves the finite element method
here is identical to that on the simpler grids.
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4.5 Exercise

Exercise 4.1.

1. Write a function that, given a list of nodes and the 𝐼𝐸𝑁 and 𝐼𝐷 arrays, and also
given the source function 𝑆, uses the finite element method to return 𝚿.

2. Test on the system 𝑆(𝑥, 𝑦) = 1 with exact solution Ψ = 𝑥(1 − 𝑥/2).
3. For a more complex case with the same boundary conditions try

𝑆(𝑥, 𝑦) = 2𝑥(𝑥 − 2)(3𝑦2 − 3𝑦 + 1
2) + 𝑦2(𝑦 − 1)2 (4.18)

with exact solution

Ψ(𝑥, 𝑦) = 𝑥(1 − 𝑥
2 )𝑦2(1 − 𝑦)2. (4.19)
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5 Time evolution

We now want to solve the full time dependent problem, (Equation 1.4),

𝐷Ψ
𝐷𝑡 = 𝜕Ψ

𝜕𝑡 + u ⋅ ∇Ψ = 𝑆 + 𝜇Ψ∇2Ψ. (5.1)

Again we will start by restricting to one dimension, giving

𝐷Ψ
𝐷𝑡 = 𝜕Ψ

𝜕𝑡⏟
(1)

+ 𝑢𝜕Ψ
𝜕𝑥⏟
(2)

= 𝑆⏟
(3)

+ 𝜇Ψ
𝜕2Ψ
𝜕𝑥2⏟
(4)

. (5.2)

We remember that the respective terms are

1. the time evolution of the pollution concentration,
2. the advection of the pollution concentration by the wind,
3. the source/sink of pollution,
4. the diffusion of pollution concentration.

We will again use the domain 𝑥 ∈ [0, 1] with the boundary conditions

Ψ(0) = 𝛼, 𝜕𝑥Ψ|𝑥=1 = 𝛽. (5.3)

5.1 Weak form

We will repeat the key steps from the static case: introducing the weak form by multiply‐
ing by a test function and integrating over the domain, and representing all functions in
terms of shape, or basis, functions. The key difference now is that the functions depend
on time.
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The continuum weak form of (Equation 5.2) is

∫ 𝑤𝜕Ψ
𝜕𝑡⏟

(1)

+ 𝑢𝑤(1)Ψ(1)⏟⏟⏟⏟⏟
(2a)

− 𝑢 ∫ Ψ𝜕𝑤
𝜕𝑥⏟⏟⏟⏟⏟

(2b)

= ∫ 𝑤𝑆
⏟

(3)

+

𝜇Ψ𝑤(1)𝛽⏟
(4a)

− 𝜇Ψ ∫ 𝜕𝑤
𝜕𝑥

𝜕Ψ
𝜕𝑥⏟⏟⏟⏟⏟

(4b)

.
(5.4)

Note that we have used that the weighting function vanishes at the Dirichlet boundary,
𝑤(0) = 0, and assumed that the test function𝑤 is time independent. We have integrated
by parts again to move derivatives onto the test function, with the notation linking the
boundary terms to their associated integrals.

To include time dependence we take the static case of (Equation 3.8), which was

Ψ(𝑥) = ∑
𝐴

Ψ𝐴𝑁𝐴(𝑥), (5.5)

and generalise it so that Ψ𝐴 ≡ Ψ𝐴(𝑡). Now the nodal values Ψ𝐴 contain the time depen‐
dence. The shape functions 𝑁𝐴 remain time independent.

The weak form will now give us

(1) → ∑
𝐵

𝑤𝐵 ∑
𝐴

𝜕Ψ𝐴
𝜕𝑡

∫ 𝑁𝐴𝑁𝐵,

(2a) → 𝑢𝑤(1)Ψ(1),

(2b) → −𝑢 ∑
𝐵

𝑤𝐵 ∑
𝐴

Ψ𝐴 ∫ 𝑁𝐴
𝜕𝑁𝐵
𝜕𝑥 ,

(3) → ∑
𝐵

𝑤𝐵 ∫ 𝑁𝐵𝑆,

(4a) → 𝜇Ψ𝑤(1)𝛽,

(4b) → −𝜇Ψ ∑
𝐵

𝑤𝐵 ∑
𝐴

Ψ𝐴 ∫ 𝜕𝑁𝐴
𝜕𝑥

𝜕𝑁𝐵
𝜕𝑥 .

(5.6)

As before, we gather together all of the terms with respect to the (arbitrary) coefficients
of the test function 𝑤𝐵. We also introduce the function 𝑞(𝑥) = 𝛼𝑁0(𝑥) and write
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Ψ(𝑥, 𝑡) = 𝜓(𝑥, 𝑡) + 𝑞(𝑥), to balance the Dirichlet boundary condition. This gives the
matrix equation

𝑀𝐴𝐵
𝜕𝜓𝐴
𝜕𝑡 + 𝐾𝐴𝐵𝜓𝐴 = 𝐹𝐵, (5.7)

where𝑀 is themass or capacitymatrix, and𝐾 is the stiffnessmatrix and F the force vector
as before. We read off the coefficients of the various terms using (Equation 5.6) as

𝑀𝑎𝑏 = ∫ 𝑁𝑎𝑁𝑏,

𝐾𝑎𝑏 = 𝜇Ψ ∫ 𝜕𝑁𝑎
𝜕𝑥

𝜕𝑁𝑏
𝜕𝑥 − 𝑢 ∫ 𝑁𝑎

𝜕𝑁𝑏
𝜕𝑥 ,

𝐹𝑏 = ∫ 𝑁𝑏𝑆 − 𝑢Ψ0𝛿0
𝐵(𝑏) + 𝜇Ψ𝛿𝑁elements

𝐵(𝑏) − 𝑞𝛿0
𝐵(𝑏)𝑘0

12.

(5.8)

The terms are given with respect to the local element number {𝑎, 𝑏} and are assembled
into the global matrix in exactly the same way as before. The notation 𝐵(𝑏) indicates
the global node number computed from the local number, and is needed to identify the
boundary locations.

5.2 Time stepping

The matrix equation (Equation 5.7) solves for 𝜓 via evolving its nodal values 𝜓𝐴 in time.
This equation is semi‐discrete: it is continuous in time, but discrete in space.

Semi‐discrete approaches to PDEs are more general than finite element methods. They
have the huge advantage that we end up solving ODEs, for which there is a vast literature,
considerable analysis, and many well implemented and tested codes. They have the disad‐
vantage that they are typically less efficient than bespoke, fully discrete methods with the
same order of accuracy.

Here we give two simple methods that are often used in solving the time evolution of a
semi‐discrete problem. We write the system to be solved as

𝜕U
𝜕𝑡 = ℱ(U) (5.9)
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where U is the state vector. In the case of (Equation 5.7) the state vector is the coefficients
𝜓𝐴 and the right‐hand‐side vector ℱ is

ℱ𝐴 = 𝑀−1
𝐴𝐵 (𝐹𝐵 − 𝐾𝐴𝐵𝜓𝐴) . (5.10)

Note that explicitly computing the matrix inverse is typically numerically inaccurate, and
instead solving the linear system is preferred.

5.2.1 Euler

We denote the (known) state vector at time 𝑡(𝑛) and U𝑛. In Euler’s method we update to
the unknown time 𝑡(𝑛+1) = 𝑡(𝑛) + Δ𝑡 by

U𝑛+1 = U𝑛 + Δ𝑡 ℱ (U𝑛) . (5.11)

This is exactly the result given by forward differencing in time, as seen (for example) in the
derivation of FTCS. It is explicit, and gives first order accuracy in time.

5.2.2 RK2

Higher order methods can be constructed by updating in multiple stages. At each stage
we compute the right hand side vector, and from that can approximate a solution at a time
typically in [𝑡(𝑛), 𝑡(𝑛+1)]. By combining these stages appropriately a better approximation
to the solution at the next timestep can be found. The Runge‐Kutta family of methods is
typical for this approach.

One particular subset of Runge‐Kutta methods can ensure a form of total variation bound‐
edness, linked to the TVD methods seen earlier. These Strict Stability Preserving (SSP)
methods are preferred when dealing with semi‐discrete PDE evolutions. The standard sec‐
ond order, explicit, SSP Runge‐Kutta method (ESSPRK2) can be written

U[1] = U𝑛 + Δ𝑡 ℱ (U𝑛) ,
U𝑛+1 = 1

2 {U𝑛 + U[1] + Δ𝑡 ℱ (U[1])} .
(5.12)
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5.3 Evolving to steady state

Let us take the simplified problem from (Chapter 3), where

𝑆 = 1 − 𝑥, 𝜇 = 1. (5.13)

We know the steady state solution is 𝑥(𝑥2 − 3𝑥 + 3)/6. However, we can start from the
solution 𝑥 = 0 and see how it evolves towards steady state. For this we will use Euler
timestepping.
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Figure 5.1: Evolving to the steady state solution to the advection diffusion equation with
source 𝑆 = 1 − 𝑥.

51



5.4 Advection dominated flow

Let us now look at the advection problem from setting 𝑆(𝑥) = 0 = 𝜇Ψ. The advection
equation results and we have, from (Equation 5.8) that

𝑀𝑎𝑏 = ∫ 𝑁𝑎𝑁𝑏,

𝐾𝑎𝑏 = −𝑢 ∫ 𝑁𝑎
𝜕𝑁𝑏
𝜕𝑥 ,

𝐹𝑏 = −𝑢Ψ0𝛿0
𝐵(𝑏) − 𝑞𝛿0

𝐵(𝑏)𝑘0
12.

(5.14)

The results are seen in (Figure 5.2) where the expected advective behaviour is seen. Note
that the boundary conditions are built into the scheme here, through their appearance in
the force vector. Changing boundary conditions will require modifying the scheme.
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Figure 5.2: Advection of a sine wave. Note the standard boundary conditions (Dirichlet on
the left, Neumann on the right) means the pulse leaves the domain.
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5.5 Matrix structure

The properties of the finite elementmethod is closely tied to the properties of thematrices
involved.

0 5 10 15
0

5

10

15

0 5 10 15
0

5
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15

Figure 5.3: The structure of the mass (left) and stiffness (right) matrices for the advection
diffusion problem with 𝑢 = 1, 𝜇 = 0.1. The symmetry and sparsity can both
be used theoretically and practically.

In (Figure 5.3) we see the structure of the mass and stiffness matrices for the one dimen‐
sional advection‐diffusion problem. The matrices are symmetric and sparse ‐ in this case
they are tridiagonal. In higher dimensions, or with more complex boundary conditions, or
with more complex systems of equations, the matrices become messier. However, the key
point of matrix sparsity will be retained.

The symmetry of the mass matrix is useful in proving invertibility (essential for the method
to work). The symmetry of the stiffness matrix is useful for constructing the eigenvalues of
the discrete system, which are linked to the amplification rates in a von Neumann stability
analysis.

The sparsity of the matrices is crucial in implementing a method that scales to large num‐
bers of elements. In the simplest one dimensional implementation the size of the matri‐
ces scales as 𝑁2

elements. However, the tridiagonal nature means that the amount of useful
(non‐zero) information scales as 𝑁elements. The computational memory and work saved
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is substantial even with only tens of elements. In higher dimensions with large domains
(millions of elements) the construction of the full matrix is impractical.
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6 Flexibility with efficiency

In addition to the issues with higher order schemes noted above, there is onewasteful step
that is worth noting. Each time a higher order scheme reconstructs the data it constructs
a high‐order piecewise polynomial representation of the data everywhere. Then, in the
time update, most of this information is thrown away. At the beginning of each timestep
we only know the value of the function (for finite difference approaches) or its integral
average (for finite volume approaches).

Some alternative methods store themoments ormodes of the solution, and update all of
them. In these methods all of the information needed to evaluate the solution is available
at all times and locations, and all the information is updated at every step. This shouldmake
the methods more efficient and more local (with a smaller stencil, and hence better on
parallel machines). Their disadvantages will come in the timestep and with discontinuous
data.

The presentation here closely follows (Hesthaven 2017) – check there for considerably
more details, particularly on the theoretical results.

6.1 Function basis and weak form

Recall that in this chapter we are looking at the advection equation

Ψ𝑡 + 𝑢Ψ𝑥 = 0. (6.1)

We want to be able to compute the value of the function Ψ(𝑡, 𝑥) at any point. We can do
this by writing 𝑎 in terms of a function basis 𝜙𝑛(𝑡, 𝑥) as
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Ψ(𝑡, 𝑥) = ∑
𝑛

Ψ̂𝑛𝜙𝑛(𝑡, 𝑥). (6.2)

Here the modes or modal coefficients Ψ̂𝑛 are constants. An example of a function basis
would be

𝜙0(𝑡, 𝑥) = 1, 𝜙1(𝑡, 𝑥) = 𝑥, 𝜙2(𝑡, 𝑥) = 𝑡,
𝜙3(𝑡, 𝑥) = 1

2𝑥2, 𝜙4(𝑡, 𝑥) = 1
2𝑡2, 𝜙5(𝑡, 𝑥) = 𝑥𝑡.

(6.3)

These six modes will perfectly describe any function that remains quadratic for all space
and time.

Note that the functionbasis plays a very similar role to the shape functions discussed earlier
for other finite element methods. The crucial distinctions here are that (a) the function
basis is confined to a single element whilst a shape function is linked to a node and can be
non‐zero in multiple elements, and (b) shape functions are chosen so that the coefficients
are directly linked to the values of the function at nodes, whilst basis functions are typically
not normalized in that way.

It is often more convenient the explicitly separate space and time, as we saw using the
semi‐discrete approach in (Chapter 5). In this case we can represent the solution using a
purely spatial function basis, as

Ψ(𝑡, 𝑥) = ∑
𝑛

Ψ̂𝑛(𝑡)𝜙𝑛(𝑥). (6.4)

Now the modes depend on time, and there will only be three basis functions needed to
describe quadratic data.

Clearly we cannot store an infinite number of modes. By restricting our sum to the 𝑚 + 1
modes by writing

Ψ(𝑡, 𝑥) =
𝑚

∑
𝑛=0

Ψ̂𝑛(𝑡)𝜙𝑛(𝑥) (6.5)

we are restricting out solution to live in a finite dimensional function space (denoted 𝕍)
with basis {𝜙𝑛}, 𝑛 = 0, … , 𝑚. That means that, in general, any solution Ψ(𝑡, 𝑥) will
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have an error when plugged into the advection equation. We can pick out a solution by
insisting that this error is orthogonal to 𝕍.
To see how thisworks, write the error termas 𝜖(𝑡, 𝑥). As our (infinite dimensional) function
basis can describe any function, we expand the error in terms of the 𝜙𝑛 as well, as

𝜖(𝑡, 𝑥) = ∑
𝑛

̂𝜖𝑛(𝑡)𝜙𝑛(𝑥). (6.6)

Therefore our advection equation, including the error term, becomes

∑
𝑛

[(𝜕Ψ̂𝑛
𝜕𝑡 − ̂𝜖𝑛) 𝜙𝑛(𝑥) + 𝑢Ψ̂𝑛

𝜕𝜙𝑛
𝜕𝑥 (𝑥)] = 0. (6.7)

As our solution is finite dimensional this can be written as

𝑚
∑
𝑛=0

[𝜕Ψ̂𝑛
𝜕𝑡 𝜙𝑛(𝑥) + 𝑢Ψ̂𝑛

𝜕𝜙𝑛
𝜕𝑥 (𝑥)] =

∞
∑

𝑛=𝑚+1
̂𝜖𝑛𝜙𝑛(𝑥). (6.8)

We have used here that the orthogonality of the error requires ̂𝜖𝑛 does not contribute for
𝑛 = 0, … , 𝑚. Using standard linear algebra techniques (as 𝜙𝑛 is a basis), we can get
individual equations by taking the inner product with another member of the basis. If we
were dealing with vectors in ℝ𝑛 then the inner product would be a vector dot product.
As we are dealing with functions the inner product requires multiplication and integration
over the domain,

⟨𝑓(𝑥), 𝜙𝑙(𝑥)⟩ = ∫
𝑉
d𝑥 𝑓(𝑥)𝜙𝑙(𝑥). (6.9)

This will also write the conservation law in the integral, weak, form. This leads to, after
integrating by parts,

𝑚
∑
𝑛=0

[𝜕Ψ̂𝑛
𝜕𝑡 (∫

𝑉
d𝑥 𝜙𝑛(𝑥)𝜙𝑙(𝑥)) + ∫

𝜕𝑉
𝑢Ψ̂𝑛𝜙𝑛(𝑥)𝜙𝑙(𝑥)−

𝑢Ψ̂𝑛 ∫
𝑉
d𝑥 𝜙𝑛

𝜕𝜙𝑙
𝜕𝑥 (𝑥)] =

∞
∑

𝑛=𝑚+1
̂𝜖𝑛 ∫

𝑉
d𝑥 𝜙𝑛(𝑥)𝜙𝑙(𝑥).

(6.10)
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Restricting ourselves to the first𝑚+1modes we see only the left hand side contributes.

We can write this result as a matrix equation. Define the state vector

𝚿̂ = (Ψ̂0, … , Ψ̂𝑁)𝑇 . (6.11)

For now, restrict to one dimension and set 𝑉 = [−1, 1]: we can use a coordinate trans‐
formation to convert to other domains. Then define the matrices

𝑀̂𝑙𝑛 = ∫
1

−1
𝜙𝑙(𝑥)𝜙𝑛(𝑥),

̂𝑆𝑙𝑛 = ∫
1

−1
𝜙𝑙(𝑥)𝜕𝜙𝑛

𝜕𝑥 (𝑥),
(6.12)

which can be pre‐calculated and stored for repeated use. These are typically referred to
(building on finite element work) as themassmatrix (𝑀̂ ) and the stiffnessmatrix ( ̂𝑆). We
therefore finally have

𝑀̂ 𝜕𝚿̂
𝜕𝑡 + ̂𝑆𝑇 (𝑢𝚿̂) = − [𝝓𝐹]1−1 . (6.13)

The right hand side term is the boundary flux and requires coupling to neighbouring cells,
or boundary conditions. It requires evaluating a product of basis functions 𝜙𝑙(𝑥)𝜙𝑛(𝑥) at
the boundary of the domain.

We see that, once we have evaluated the mass and stiffness matrices, we can then up‐
date allmodes 𝚿̂ by evaluating the boundary flux term on the right hand side and solving
a linear system. This illustrates the small stencil of discontinuous Galerkin schemes: the
only coupling to the other cells is through that boundary integral, which only couples to
direct neighbours. However, if the flux terms couple different modes (as evaluating them
requires evaluating a product of basis functions𝜙𝑙(𝑥)𝜙𝑛(𝑥)), then the amount of informa‐
tion communicated may still be large. Therefore the communication cost of the scheme is
linked to the properties of the basis functions at the domain boundary.

We also see that the behaviour of the scheme will crucially depend on the mass matrix 𝑀̂ .
If it is singular the scheme cannot work. If it is poorly conditioned then the scheme will
rapidly lose accuracy. Crucially, with the monomial basis of (Equation 6.3), the condition
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number of themassmatrix grows very rapidly, and the scheme loses accuracy formoderate
𝑚.

The choice of whether to prioritize the behaviour of themassmatrix or the flux terms leads
to two different schemes.

6.2 Modal Discontinuous Galerkin

If we prioritize the behaviour of the mass matrix as the most important starting point for
our scheme we are led to the modal Discontinuous Galerkin approach. We noted above
that the choice of a monomial basis led to a poorly conditioned mass matrix. Instead, it
is sensible to pick as a function basis something from the class of orthogonal polynomials,
where

∫
𝑉

𝑤(𝑥)𝜙𝑙(𝑥)𝜙𝑛(𝑥) ∝ 𝛿𝑙𝑛. (6.14)

The Kronecker delta 𝛿𝑙𝑛 ensures that the mass matrix is diagonal, and hence always easy
to invert. When theweight function𝑤(𝑥) is identically 1, as needed for the mass matrix in
(Equation 6.12), this suggests we should use the Legendre polynomials 𝜙𝑛(𝑥) = 𝑃𝑛(𝑥),
which obey

∫
1

−1
𝑃𝑙(𝑥)𝑃𝑛(𝑥) = 2

2𝑛 + 1𝛿𝑙𝑛. (6.15)

A further simplification comes from choosing the normalized Legendre polynomials

̃𝑃𝑛(𝑥) = √2𝑛 + 1
2 𝑃𝑛(𝑥) (6.16)

which ensures that the mass matrix 𝑀̂ is the identity matrix.

Now that we have fixed a choice of basis functions we can evaluate themass matrix (which
will be the identity here) and the stiffness matrix ̂𝑆. We still need to evaluate the bound‐
ary flux. If we explicitly write out equation (Equation 6.13) in index form (using Einstein
summation convention over 𝑛) we have
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𝑀̂𝑙𝑛
𝜕Ψ̂𝑛
𝜕𝑡 + ̂𝑆𝑇

𝑙𝑛𝑢Ψ̂𝑛 = − [𝑢𝑃𝑙(𝑥)𝑃𝑛(𝑥)Ψ̂𝑛]1

−1
. (6.17)

We can now directly use that 𝑃𝑛(1) = 1 and 𝑃𝑛(−1) = (−1)𝑛 to get the boundary flux
term as

− [𝑢𝑃𝑙(𝑥)𝑃𝑛(𝑥)Ψ̂𝑛]1

−1
= 𝑢 {(−1)𝑙+𝑛Ψ𝑛(−1) − Ψ𝑛(1)} . (6.18)

Here Ψ𝑛(1), for example, is the 𝑛th mode of the solution at the boundary. As there are
two solutions at the boundary of the element ‐ the solution at 𝑥 = 1− from the interior
of the element, and the solution at 𝑥 = 1+ from the exterior (either another element,
or from the boundary conditions), we need a Riemann solver to give us a single solution
at 𝑥 = 1. In the case of linear advection, as here, we can use the upwind solver for the
modes as well as for the solution, so

Ψ𝑛(𝑥; Ψ−
𝑛 , Ψ+

𝑛) = {Ψ−
𝑛 if 𝑢 ≥ 0

Ψ+
𝑛 otherwise.

(6.19)

Two points should be immediately noted about this discontinuous Galerkin method. First,
if we restrict to only one mode (𝑁 = 0), then the only basis function we have is ̃𝑃0(𝑥) =
1/

√
2, the mass matrix 𝑀̂ = 1, the stiffness matrix vanishes, and the boundary flux term

reduces to the standard finite volume update. In general, the zero mode corresponds to
the integral average over the cell or element.

Second, we note that the boundary flux term always couples differentmodes (when includ‐
ing more than just one), and only in the linear case will it be simple to give a flux formula
that works for all modes. As the boundary flux term is crucial in many cases, we need
to change approach to simplify the calculation of this term using (possibly approximate)
solutions to the Riemann problem.

6.3 Nodal Discontinuous Galerkin

A problem with the modal form used above is with the boundary flux term. The solution
(for nonlinear equations) of the flux for higher order modes is complex. The mode cou‐
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pling at the boundary alsomeans the amount of information communicated could be large,
meaning the scheme is not as efficient as it could be. Insteadwe note that in standard finite
volume schemes we need the value of the function either side of the interface. This sug‐
gests that, rather than using amodal expansion as above, we should use a nodal expansion
where the values of the functions are known at particular points. If two of those points are
at the boundaries of the cell then those values can be used to compute the flux.

Let us denote these nodal locations by 𝜉𝑖, and the values of the solution at these locations
by Ψ𝑖. We therefore have our solution in the form

Ψ(𝑡, 𝑥) =
𝑚

∑
𝑖=0

Ψ𝑖(𝑡)ℓ𝑖(𝑥) (6.20)

where the ℓ𝑖(𝑥) are the standard indicator interpolating polynomials that obey

ℓ𝑖(𝜉𝑗) = 𝛿𝑖𝑗. (6.21)

This directly matches themodal form of the solution from (Equation 6.5),

Ψ(𝑡, 𝑥) = ∑
𝑛

Ψ̂𝑛(𝑡)𝜙𝑛(𝑥), (6.22)

with the basis functions 𝜙𝑛 being the indicator polynomials ℓ𝑛. We immediately see that
the boundary flux term will simplify hugely, as the only term that is non‐zero at 𝑥 =
−1 comes from the product of ℓ0(−1)ℓ0(−1), using the convention that 𝜉0 = −1, as
ℓ𝑛(−1) = 0 for 𝑛 ≠ 0. Similarly the only term that is non‐zero at 𝑥 = +1 comes from
the product of ℓ𝑚(−1)ℓ𝑚(−1). Therefore, for any number of modes 𝑚, we only need to
communicate one piece of information from the neighbouring element in order to solve
the Riemann problem, and this is the value of the solution at that interface.

However, by choosing as a basis the indicator polynomials ℓ𝑛(𝑥), the resultingmassmatrix
will not be the identity, as the indicator polynomials are not orthogonal. The properties of
the mass matrix will now crucially depend on how we choose the locations of the nodes,
𝜉𝑖. This is most easily done by linking the nodal form of (Equation 6.20) to the modal form
(Equation 6.5), where here we are thinking of 𝜙𝑛 as being a different basis (𝜙𝑛 ≠ ℓ𝑛)
which is known to be well behaved. This implicitly allows us to restrict 𝜉𝑗.
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By evaluating both forms at a node 𝜉𝑗 we get

Ψ𝑗 = ∑
𝑛

𝜙𝑛(𝜉𝑗)Ψ̂𝑛. (6.23)

By defining a (generalized) Vandermondematrix ̂𝑉 as

̂𝑉𝑗𝑛 = 𝜙𝑛(𝜉𝑗) (6.24)

we see that we can translate from the modal state vector 𝚿̂ = (Ψ̂0, … , Ψ̂𝑁)𝑇 to the
nodal state vector 𝚿 = (Ψ0, … , Ψ𝑁)𝑇 via the matrix equation

̂𝑉 𝚿̂ = 𝚿. (6.25)

We can also connect the basis functions 𝜙𝑛 to the interpolating polynomials ℓ𝑖 via the
Vandermonde matrix. Note that

Ψ(𝑡, 𝑥) = ∑
𝑛

Ψ̂𝑛𝜙𝑛(𝑥)

= ∑
𝑖

Ψ𝑖ℓ𝑖(𝑥)

= ∑
𝑖

∑
𝑛

̂𝑉𝑖𝑛Ψ̂𝑛ℓ𝑖(𝑥)

= ∑
𝑛

∑
𝑖

̂𝑉𝑖𝑛Ψ̂𝑛ℓ𝑖(𝑥)

⟹ 0 = ∑
𝑛

Ψ̂𝑛 (∑
𝑖

[ ̂𝑉𝑖𝑛ℓ𝑖(𝑥) − 𝜙𝑛(𝑥)]) .

(6.26)

This immediately gives

̂𝑉𝑖𝑛ℓ𝑖(𝑥) = 𝜙𝑛(𝑥) (6.27)

or, by thinking of the basis functions and interpolating polynomials as vectors,

̂𝑉 𝑇 ℓ(𝑥) = 𝝓(𝑥). (6.28)
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This allows us to convert the modal approach to deriving a scheme to a nodal approach
directly through the Vandermonde matrix.

To construct the nodal scheme we need to fix the location of the nodal points. We have
constructed the modal scheme to be well conditioned by looking at the mass matrix. This
suggests that tomake the nodal schemewell behavedwe should ensure good conditioning
of the Vandermonde matrix. This requires carefully choosing the nodes 𝜉𝑖. We also want
to ensure that two of the nodes are at 𝑥 = ±1, and that the accuracy of the scheme is
as good as possible. All these conditions combine to suggest that the nodes 𝜉𝑖 should be
given by the Legendre‐Gauss‐Lobatto points, which are the zeros of𝑃 ′

𝑁(𝑥) combined with
±1.
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Figure 6.1: The grid for a Discontinuous Galerkin method is split into cells or elements as
indicated by the vertical dashed lines – here there are only 4 cells. Within each
cell the solution is represented by an 𝑚𝑒𝑥𝑡𝑡ℎ order polynoial, as shown by the
dashed lines. This representation is central to the modal DG method. Equiva‐
lent information can be stored at specific nodes, as shown by themarkers. Note
how the number and location of the nodes varies with 𝑚.

Figure (Figure 6.1) shows the nodes and modes for a sine wave represented by a Discontin‐
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uous Galerkin method on a grid with only 4 cells. We see how rapidly the representation
appears to converge to the smooth sine wave with increasing 𝑚. Note also how the lo‐
cations of the nodes varies with 𝑚, as the optimal nodes changes with the order of the
method. However, in all cases there are nodes at the boundaries of each cell.

Exercise 6.1. Construct the Vandermonde matrix converting modal coefficients, based on
orthonormal Legendre polynomials, to nodal coefficients, based on Gauss‐Lobatto nodal
points, on the interval 𝑥 ∈ [−1, 1]. For example, for 𝑚 = 2 the result is, to 4 significant
figures,

𝑉 = ⎛⎜⎜
⎝

0.7071 −1.225 1.581
0.7071 0 −0.7906
0.7071 1.225 1.581

⎞⎟⎟
⎠

. (6.29)

Using the Vandermonde matrix and its inverse, check that you can convert from nodes to
modes and vice versa. Check that the condition number grows slowly with 𝑚 (roughly as
𝑚1/2 for large 𝑚).

With these restrictions, we can now construct the nodal scheme. As noted above, this
scheme remains a modal scheme as generally introduced in (Section 6.1), but the basis
functions are the indicator polynomials ℓ𝑛(𝑥). Thus the scheme can be written in the
mass matrix form as in (Equation 6.13) of

𝑀̂ 𝜕𝚿̂
𝜕𝑡 + ̂𝑆𝑇 𝑢𝚿̂ = − [𝝓𝐅]1−1 , (6.30)

but now the two matrices are given by

𝑀̂𝑙𝑛 = ∫
1

−1
ℓ𝑙(𝑥)ℓ𝑛(𝑥),

̂𝑆𝑙𝑛 = ∫
1

−1
ℓ𝑙(𝑥)𝜕ℓ𝑛

𝜕𝑥 (𝑥).
(6.31)

By using the Vandermonde matrix to link the nodal basis to an orthogonal basis such as
the Legendre polynomials we can simplify the mass matrix to
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𝑀̂ = ( ̂𝑉 ̂𝑉 𝑇 )−1 . (6.32)

The stiffness matrix can also be simplified, by re‐writing 𝜕ℓ𝑛
𝜕𝑥 (𝑥) as an expansion in terms

of ℓ𝑛(𝑥). Defining the differentiation matrix 𝐷̂ as

𝐷̂𝑙𝑛 = 𝜕ℓ𝑛
𝜕𝑥 (𝑥)∣

𝑥=𝜉𝑙

(6.33)

we have 𝜕ℓ𝑛
𝜕𝑥 (𝑥) = ∑𝑘 𝐷̂𝑘𝑛ℓ𝑘(𝑥)

̂𝑆𝑙𝑛 = ∫
1

−1
ℓ𝑙(𝑥)𝜕ℓ𝑛

𝜕𝑥 (𝑥)

= ∫
1

−1
ℓ𝑙(𝑥) ∑

𝑘
𝐷̂𝑘𝑛ℓ𝑘(𝑥)

= ∑
𝑘

(ℓ𝑙(𝑥)ℓ𝑘(𝑥)) 𝐷̂𝑘𝑛

= 𝑀̂𝑙𝑘𝐷̂𝑘𝑛.

(6.34)

This shows that the stiffness matrix simplifies to

̂𝑆 = 𝑀̂𝐷̂. (6.35)

Finally, using similar methods to the steps above, we can link the differentiation matrix
back to the Vandermonde matrix, via

𝐷̂ = (𝜕 ̂𝑉
𝜕𝑥 ) ̂𝑉 −1. (6.36)

This is primarily useful when the modal function basis is a standard library function such
as the (normalized) Legendre polynomials. This means that the basis functions and their
derivatives, and hence the Vandermonde matrix and its derivatives, can be written solely
in terms of library functions. For example, in Python the numpy package contains (in
numpy.polynomial.legendre) the functions legval (which evaluates the

Legendre polynomials),legder(which links the derivatives of the
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Legendre polynomials back to the Legendre polynomials themselves),

andlegvander‘ (which evaluates the Vandermonde matrix directly, but in un‐normalized
form).

There is one final step needed to construct the full scheme. So far, the method has been
built assuming a single element with the coordinates 𝑥 ∈ [−1, 1]. For most cases we will
want to use a “small” number ofmodes, say𝑚 ≤ 5, and split the domain into𝑁 elements,
like the cells in a finite volume scheme. If we assume a general element has coordinates
𝑥 ∈ [𝑥𝑗−1/2, 𝑥𝑗+1/2] with width Δ𝑥, then the form of the scheme remains the same:

𝑀 𝜕𝚿̂
𝜕𝑡 + 𝑆𝑇 𝑢𝚿̂ = − [𝑢𝝓]𝑥𝑗+1/2

𝑥𝑗−1/2
. (6.37)

However, the change of coordinates needs to be factored in. We can see how this works
by looking at the integral definitions, such as (Equation 6.31). We see that the mass matrix
transforms as

𝑀 = Δ𝑥
2 𝑀̂, (6.38)

but that the stiffness matrix is unchanged.

Exercise 6.2. From the Vandermonde matrices constructed above, build the mass, differ‐
entiation and stiffness matrices 𝑀̂, 𝐷̂, ̂𝑆, on the interval 𝑥 ∈ [−1, 1]. For example, for
𝑚 = 2 the results are, to 4 significant figures,

𝑀̂ = ⎛⎜⎜
⎝

0.2667 0.1333 −0.0667
0.1333 1.067 0.1333

−0.06667 0.1333 0.2667
⎞⎟⎟
⎠

,

𝐷̂ = ⎛⎜⎜
⎝

−1.5 2 −0.5
−0.5 0 0.5
0.5 −2 1.5

⎞⎟⎟
⎠

,

̂𝑆 = ⎛⎜⎜
⎝

−0.5 0.6667 −0.1667
−0.6667 0 0.6667
0.1667 −0.6667 0.5

⎞⎟⎟
⎠

.

(6.39)
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Figure 6.2: A Discontinuous Galerkin method with 𝑚 = 3 and 16 elements applied to the
advection equation, where a sine wave is advected once around the domain.
Even at this low resolution the result is visually exact. The solutions are plotted
at the nodal values, which are not evenly spaced.
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Figure 6.3: A Discontinuous Galerkin method with 𝑚 = 3 and 16 elements applied to the
advection equation, where a discontinuous top hat function is advected once
around the domain. The expected Gibbs oscillations are seen.
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By combining the nodal DG update described above with a time integrator we can look at
the performance of the scheme. We need to take care in choosing the timestep. From the
nodal point of viewwe can see that the width of the cell,Δ𝑥, is not going to be the limiting
factor. Instead, the smallest distance between the (unequally spaced!) nodes is going to
be crucial. General results (see e.g. (Hesthaven 2017)) suggest that reducing the timestep
by a factor of 2𝑚 + 1 is sufficient to ensure stability, but it does increase computational
cost.

Figures (Figure 6.2) and (Figure 6.3) show the advection of two initial profiles one period
around a periodic domain. In (Figure 6.2) we see the excellent performance when applied
to a smooth profile. The method is essentially indistinguishable from the exact solution.
However, in (Figure 6.3), we see that when the method is applied to a discontinuous initial
profile then Gibbs oscillations result. The only “nice” feature of the Discontinuous Galerkin
method here is that these oscillations are confined to the elements next to the discontinu‐
ities, and do not spread to cover the entire grid.

As with finite difference schemes, there are a range of modifications that can be made to
limit or eliminate these oscillations. In Discontinuous Galerkin methods it is typical to do
this in two steps: first, identify which elements need limiting, and second, modify the data
in the required cells. The identification step can be done using the nodal values: construct
limited slopes from cell average values and compare the predicted values at cell boundaries
to the nodal values actually stored. The modification step can be done in many ways. A
number are outlined in (Hesthaven 2017).

With smooth solutions we can check the convergence rate of the method. In (Figure 6.4)
the smooth sine profile is again advected once around a periodic domain, usingmode num‐
bers 𝑚 = 1, … , 4, and checking convergence with the number of elements. This using a
third order Runge Kutta method in time, and eventually the time integration error domi‐
nates over the spatial error.

/Users/ih3/opt/anaconda3/envs/mfc/lib/python3.12/site-packages/scipy/integrate/_ode.py:431: UserWarning: dop853: step size becomes too small

self._y, self.t = mth(self.f, self.jac or (lambda: None),

In (Figure 6.5) an 8th order time integrator is used. This reduces the time integrator error
far below what is needed, and we now see that every scheme converges at the expected
rate. In more complex systems in multiple dimensions the error from the spatial terms
will be much larger, and so lower order methods can be used without compromising the
accuracy.
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Figure 6.4: The convergence rate of the DG method applied to a sine wave. An explicit SSP
third order Runge‐Kutta time integrator is used. The expected convergence rate
(𝑚 + 1) is seen until the limits of the time integrator are reached.
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Figure 6.5: The convergence rate of the DGmethod applied to a sinewave. An eighth order
Runge‐Kutta time integrator is used. The expected convergence rate (𝑚 + 1) is
seen even at high orders.
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Exercise 6.3. Write a Python code to advect a profile around 𝑥 ∈ [0, 1] using the Dis‐
continuous Galerkin method. A variety of Python packages can be used to facilitate this:
numpy will solve linear systems and construct the matrices linked to Legendre polynomi‐
als, scipy.integrate will solve the ODE in time, and quadpy will construct the Gauss‐
Lobatto integration points.

Check that the solution converges as expected.

6.4 Discussion

In some ways Discontinuous Galerkin type methods seem a half‐way‐house between spec‐
tral methods and finite difference or finite volume methods. In principle the number of
modes used within each element can be increased arbitrarily, giving the extremely rapid
convergence of a spectral method. However, each element is linked to its neighbour, so
there is still the communication with neighbouring points as in, for example, finite differ‐
ence methods.

The key advantage of Discontinuous Galerkin methods comes with the latest computing
hardware. These “Exascale” High Performancemachines will rely on codes using very large
numbers of relatively cheap, energy efficient individual computing cores (nearly always
GPUs). This means the calculation must be performed in parallel across millions (or more)
different compute cores. In this situation the limiting factorwill be the communicationwith
neighbouring points. This makes pure spectral methods totally impractical, and high accu‐
racy finite difference methods (that have to communicate with many neighbours) will also
not reach the performance expectations. As Discontinuous Galerkin methods only have
to compute with one neighbouring element on each side, they minimise communication
whilst giving high accuracy.

However, the stiffness andmassmatrices involved in the update grow rapidlywith the num‐
ber of spatial dimensions and with the size of the system to solve. In addition, simple Dis‐
continuous Galerkin methods struggle with steep gradients and discontinuities. The com‐
plexity and cost ofmaking thesemethods practicalmeans that they are ‐ as yet ‐ rarely used.
Future computing hardware considerations may make them increasingly important.
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A Background material

A series of standard results used without justification in these notes.

A.1 Taylor expansions

Given a function 𝑓(𝑥) with sufficient derivatives at a point 𝑋, the function can be repre‐
sented as a polynomial using a Taylor series about the point 𝑋. There are multiple forms
of interest.

The general form with remainder term obscured is

𝑓(𝑥) = 𝑓(𝑋) + (𝑋 − 𝑥)𝑓 ′(𝑋) + 𝒪 ((𝑋 − 𝑥)2) . (A.1)

The series expanded as a general polynomial is

𝑓(𝑥) = ∑
𝑘=0

(𝑋 − 𝑥)𝑘

𝑘! 𝑓 (𝑘)(𝑋) (A.2)

where the notation 𝑓 (𝑘)(𝑋) corresponds to the 𝑘th derivative of 𝑓 evaluated at 𝑋.

For finite differencing it is useful to restrict to an evenly spaced grid𝑥𝑗 = 𝑥0+𝑗 Δ𝑥. Then,
expanding about 𝑥𝑖, we have

𝑓(𝑥𝑗) = ∑
𝑘=0

(𝑗 − 𝑖)𝑘 Δ𝑥𝑘

𝑘! 𝑓 (𝑘)(𝑥𝑖) . (A.3)

The most useful results, written out explicitly to low orders, are

74



𝑓(𝑥𝑖±1) = 𝑓(𝑥𝑖) ± Δ𝑥 𝑓 ′(𝑥𝑖) + Δ𝑥2

2 𝑓″(𝑥𝑖) ± Δ𝑥3

6 𝑓‴(𝑥𝑖) + 𝒪(Δ𝑥4) . (A.4)

A.2 Series expansions

A.2.1 Fourier Series

An 𝐿2 square integrable periodic function of one variable 𝑥 defined on [−𝜋, 𝜋] can be
represented by the complex Fourier series

𝑓(𝑥) ∼
∞

∑
𝑛=−∞

𝑎𝑛 exp(𝑖𝑛𝑥) (A.5)

where the (complex) coefficients 𝑎𝑛 are given by

𝑎𝑛 = 1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝑥) exp(−𝑖𝑛𝑥) d𝑥 . (A.6)

When the function depends on more than one variable the series expansion can be per‐
formed separately for each, or the dependency on the additional variables can be retained
in the coefficient. Typically spatial dependence is expanded in a series and time depen‐
dence is retained in the coefficients, for example as

𝑓(𝑥, 𝑦, 𝑡) ∼
∞

∑
𝑛𝑥=−∞

∞
∑

𝑛𝑦=−∞
𝑎𝑛(𝑡) exp(𝑖𝑛𝑥𝑥) exp(𝑖𝑛𝑦𝑦) . (A.7)

A.2.2 Eigenfunctions

One key use for series expansions is in differential equations. Each individual mode
𝑓𝑛(𝑥) = exp(𝑖𝑛𝑥) is an eigenfunction of both the first and second derivative opera‐
tors,
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𝜕𝑥𝑓𝑛(𝑥) = 𝑖𝑛 exp(𝑖𝑛𝑥)
= 𝑖𝑛𝑓𝑛(𝑥) ,

𝜕𝑥𝑥𝑓𝑛(𝑥) = −𝑛2 exp(𝑖𝑛𝑥)
= −𝑛2𝑓𝑛(𝑥) .

(A.8)

When problems are linear the action of the differential operator can be studied as an alge‐
braic operation on the individual modes.

This generalizes to more complex problems. Sturm‐Liouville theory looks at problems
where the spatial differential operator has the form

ℒ(𝑦) = d
d𝑥 [𝑝(𝑥)d𝑦

d𝑥] + 𝑞(𝑥)𝑦 . (A.9)

Here 𝑝, 𝑞 are known functions. The eigenfunctions of this operator obey

ℒ(𝑦𝑛) = −𝜆𝑛𝑤(𝑥)𝑦𝑛 (A.10)

where 𝑤 is a known weighting function. With these eigenfunctions, an arbitrary function
can be represented as

𝑓(𝑥) ∼
∞

∑
𝑛=1

𝑎𝑛𝑦𝑛(𝑥) (A.11)

where the coefficients 𝑎𝑛 can be explicitly computed as

𝑎𝑛 = ∫
𝜋

−𝜋
𝑓(𝑥)𝑦𝑛(𝑥)𝑤(𝑥) d𝑥 . (A.12)

This is an expansion in terms of orthogonal functions, using that

∫
𝜋

−𝜋
𝑦𝑚(𝑥)𝑦𝑛(𝑥)𝑤(𝑥) d𝑥 = 𝛿𝑚𝑛 . (A.13)
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A.2.3 Key examples

In the Fourier Series case 𝑝(𝑥) = 1, 𝑞(𝑥) = 0, and 𝑤(𝑥) = 2𝜋. The eigenvalues are
𝜆𝑛 = 𝑛2.

In the Legendre equation case (where the domain is conventionally 𝑥 ∈ [−1, 1]) 𝑝(𝑥) =
1 − 𝑥2, 𝑞(𝑥) = 0, and 𝑤(𝑥) = (2𝑛 + 1)/2. The eigenvalues are 𝜆𝑛 = 𝑛(𝑛 + 1).
Spherical harmonics 𝑌 𝑚

ℓ (𝜃, 𝜑) are eigenfunctions of the covariant second derivative op‐
erator on a spherical shell with radius 𝑟, so that

𝑟2∇2𝑌 𝑚
ℓ = −ℓ(ℓ + 1)𝑌 𝑚

ℓ . (A.14)

Spherical harmonics look like a Fourier mode in 𝜑 multiplied by an eigenfunction of the
(associated) Legendre equation in 𝜃.
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B Order of accuracy

We here give precise definitions of the order of accuracy of a numerical methods, and a
sketch proof of the link between the local error and the global error.

The notation here will be slightly different (and annoyingly more pedantic) than other sec‐
tions.

B.1 Notation

Assume that we are given a PDE with appropriate initial boundary conditions. We denote
the solution to the PDE, using initial data at 𝑡 = 0 of 𝑦0(𝑥), as

𝑦 (𝑥, 𝑡|𝑦0(𝑥; 𝑡 = 0)) . (B.1)

We will assume that the PDE is well posed, in the sense that a small perturbation in the
initial conditions is bounded. That is, we assume that for all small numbers 𝜖 and for all
perturbations 𝛿 there exists a 𝐾 independent of time such that

‖𝑦(𝑥, 𝑡|𝑦0(𝑥; 𝑡 = 0) + 𝛿) − 𝑦(𝑥, 𝑡|𝑦0(𝑥; 𝑡 = 0))‖ ≤ 𝛿𝑒𝐾𝑡 . (B.2)

Next we assume that we are constructing a numerical approximation to the solution
y(𝑥, 𝑡). It is possible that this solution is only constructed at a finite number of points (for
example, a finite difference method on a grid), or it might be constructed at finitely many
time intervals but be computable everywhere in space (as in a spectral or finite element
method). We denote the numerical method’s update scheme by

y (𝑥, 𝑡𝑛+1| {y(𝑥, 𝑡𝑛)}) = ℱ ({y(𝑥, 𝑡𝑛)}) . (B.3)
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Even an implicit method can (in principle) be written in this form, but it is simplest to think
of this as an explicit method.

B.2 Local truncation error

The easiest analysis of the accuracy of a method looks at the error introduced over a single
step, assuming that the input data is exact. This is the Local Truncation Error 𝜖𝑛+1, given
by

𝜖𝑛+1 = ∥𝑦(𝑥, 𝑡𝑛+1|𝑦0(𝑥; 𝑡 = 0)) − y (𝑥, 𝑡𝑛+1| {𝑦(𝑥, 𝑡𝑛|𝑦0(𝑥; 𝑡 = 0))})∥ . (B.4)

When computing the local truncation error it is usual to use a series expansion, such as a
Taylor series expansion, in terms of small quantities controllable by the numerical method.
Typical examples would be the grid spacings Δ𝑡, Δ𝑥 in finite difference methods, and the
inverse of the number of degrees of freedom 𝑁−1 in spectral or finite element methods.
We then assume that only the first term in the expansion survives, giving (for example)

𝜖𝑛+1 ∝ Δ𝑡𝑝+1 . (B.5)

This makes the local order of accuracy be 𝑝 + 1. We typically assume that 𝑝 is indepen‐
dent of time (and hence independent of 𝑛), and write the local truncation error as 𝜖 by
maximising over all time.

B.3 Global truncation error

Local truncation error is the easiest thing to analyse, but not what we want to compute.
We want to relate the error at the end of the simulation, when it has taken many steps, to
the parameters (such as grid spacing). This is the Global Truncation Error

ℰ𝑇 = ‖𝑦(𝑥, 𝑇 |𝑦0(𝑥; 𝑡 = 0)) − y (𝑥, 𝑇 | {y(𝑥, 𝑇 − Δ𝑡)})‖ . (B.6)
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This cannot be directly computed using the local truncation error, as the numerical solution
at time 𝑇 is not computed from the exact solution at the previous timestep, but from the
approximate numerical solution at that point. However, we can add and subtract the exact
solution with different initial conditions, at the time 𝑇 − Δ𝑡. Thus

ℰ𝑇 = ‖𝑦(𝑥, 𝑇 |𝑦0(𝑥; 𝑡 = 0)) − 𝑦(𝑥, 𝑇 |y(𝑥; 𝑇 − Δ𝑡))+
𝑦(𝑥, 𝑇 |y(𝑥; 𝑇 − Δ𝑡)) − y (𝑥, 𝑇 | {y(𝑥, 𝑇 − Δ𝑡)})‖

≤ ‖𝑦(𝑥, 𝑇 |𝑦0(𝑥; 𝑡 = 0)) − 𝑦(𝑥, 𝑇 |y(𝑥; 𝑇 − Δ𝑡))‖ +
‖𝑦(𝑥, 𝑇 |y(𝑥; 𝑇 − Δ𝑡)) − y (𝑥, 𝑇 | {y(𝑥, 𝑇 − Δ𝑡)})‖

≤ ‖𝑦(𝑥, 𝑇 |𝑦0(𝑥; 𝑡 = 0)) − 𝑦(𝑥, 𝑇 |y(𝑥; 𝑇 − Δ𝑡))‖ + 𝜖
≤ ‖𝑦(𝑥, 𝑇 |𝑦(𝑥; 𝑡 = 𝑇 − Δ𝑡)) − 𝑦(𝑥, 𝑇 |y(𝑥; 𝑇 − Δ𝑡))‖ + 𝜖
≤ ℰ𝑇 −Δ𝑡𝑒𝐾 Δ𝑡 + 𝜖 .

(B.7)

Here we have first used the definition of the local truncation error, then the definition of
well‐posedness.

Using this recursion relation, combined with the fact that the global truncation error after
a single step is precisely the local truncation error, we find that

ℰ𝑇 ∝ 𝜖
Δ𝑡 . (B.8)

This result says that if the local truncation error has order of accuracy 𝑝+1, then the global
truncation error has order of accuracy 𝑝. Loosely, this can be understood as the finite time
𝑇 requires∼ Δ𝑡−1 timesteps to reach, and each of those steps introduces an error∼ 𝜖.
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C Lax Equivalence Theorem

The Lax Equivalence Theorem is usually phrased roughly as

Anumerical scheme converges to the true solution if, and only if, it is consistent
and stable.

There are a number of different versions of this theorem. The main result is the Lax‐
Richtmyer case which holds for linear numerical methods applied to well‐posed, linear
partial differential equations with periodic boundaries (or infinite domains where the data
has compact support). There are extensions (for example, the Lax‐Wendroff case) which
at least partially lift these restrictions, but well‐posedness remains essential and results in
the nonlinear case are limited.

We sketch the Lax‐Richtmyer case.

As a motivating example, think of the advection equation

𝜕𝑡𝜙 + 𝑣𝜕𝑥𝜙 = 0 (C.1)

with 𝑣 > 0 constant, approximated by the standard FTBS scheme

𝜙𝑛+1
𝑖 = 𝜙𝑛

𝑖 + 𝑣 Δ𝑡
Δ𝑥 (𝜙𝑛

𝑖 − 𝜙𝑛
𝑖−1) = ℒΔ𝑡 ({𝜙𝑛

𝑖 })𝑖 = ℒΔ𝑡 (𝝓𝑛)𝑖 . (C.2)

We have introduced the operator notation ℒΔ𝑡. The discrete solution at time 𝑡𝑛 = 𝑛 Δ𝑡
is given by the vector 𝝓𝑛. The discrete solution at the next timestep, 𝝓𝑛+1, is given by
applying the operator to the solution at the current timestep,

𝝓𝑛+1 = ℒΔ𝑡𝝓𝑛. (C.3)
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This is therefore a linearmap on a vector space, whose vectors are (potential) discrete solu‐
tions to the PDE. Note that themap depends only on the timestepΔ𝑥, as it is assumed that
the grid (here Δ𝑥, but it extends to arbitrary dimensions and unstructured grids) depends
directly, if implicitly, on Δ𝑥.

C.1 Banach spaces

A Banach space is a complete normed vector space. For our purposes, this will be the space
of discrete approximations to the PDE. The norm will be somemeasure of the “size” of the
solution, such as the infinity norm

‖𝝓‖∞ = max
𝑖

𝜙𝑖 , (C.4)

or the 2‐norm

‖𝝓‖2 = ∑
𝑖

√(𝜙𝑖)2 Δ𝑥 . (C.5)

This allows us to formally, but abstractly, state our two key conditions and our goal.

C.2 Consistency

A numerical approximation is consistent if it correctly represents the PDE in the continuum
limit. Formally, let 𝝓 be the exact solution to the PDE, sampled onto the discrete grid as
appropriate. Also let ℒ be the formal operator that evolves the exact solution forward in
time. Therefore

ℒ(𝑇 )𝝓(0) = 𝝓(𝑇 ) , (C.6)

and

ℒ(Δ𝑡)𝝓(𝑇 ) = 𝝓(𝑇 + Δ𝑡) . (C.7)
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Then the numerical scheme is consistent if

lim
Δ𝑡→0

‖(ℒ(Δ𝑡) − ℒΔ𝑡) 𝝓(𝑇 )‖ → 0 . (C.8)

For later purposes we write that the scheme is consistent if there exists a constant 𝐾 ∈
[0, ∞) such that

‖(ℒ(Δ𝑡) − ℒΔ𝑡) 𝝓(𝑇 )‖ ≤ 𝐾𝐶 Δ𝑡 (C.9)

and 𝐾𝐶 is independent of Δ𝑡.

C.3 Stability

A numerical approximation is stable if it does not blow up “too fast”. This needs some
care, as it is possible that the exact solution to the PDE grows quickly, even exponentially
or instantaneously in special cases. Therefore the most general stability criteria that we
can work with is to state that the scheme is stable at time 𝑇 = 𝑁 Δ𝑡 if

∥(ℒΔ𝑡)
𝑁 𝝓(0)∥ ≤ 𝐾𝑇 ‖𝝓(0)‖ + 𝐷 Δ𝑡 . (C.10)

Again, the constants𝐾𝑇 , 𝐷 ∈ [0, ∞) andmust be independent of Δ𝑡 (although they can
depend on the finite time 𝑇 ). The term involving 𝐾𝑇 ensures that the numerical approxi‐
mation does not grow too fast compared to the true solution, but does allow for bounded
growth. The term involving 𝐷 allows for purely numerical growth even if the true solution
is bounded, but ensures that any such growth converges to zero in the continuum limit.

C.4 Convergence

Our goal, via the Lax Equivalence Theorem, is to show that the continuum limit of the
numerical scheme is the true solution. This means the numerical scheme converges. The
scheme is said to be convergent at time 𝑇 = 𝑁 Δ𝑡 if
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lim
Δ𝑡→0

∥(ℒ(𝑇 ) − (ℒΔ𝑡)
𝑁) 𝝓(0)∥ → 0 . (C.11)

More precisely, the scheme converges if there exists a constant 𝐾 ∈ [0, ∞) such that

∥(ℒ(𝑇 ) − (ℒΔ𝑡)
𝑁) 𝝓(0)∥ ≤ 𝐾 Δ𝑡. (C.12)

Again, the constant 𝐾 must be independent of Δ𝑡.
The key point that distinguishes convergence from consistency is the number of steps taken
by the discrete scheme. To be consistent the error needs to converge over a single discrete
step. For convergence the error needs to converge after 𝑁 steps at fixed 𝑇 , and in the
continuum limit Δ𝑡 → 0 this means 𝑁 → ∞.

C.5 Lax Equivalence Theorem

With the formal machinery set up, the Lax theorem follows.

Theorem C.1 (Lax Equivalence Theorem). Given a well‐posed, linear, initial value problem,
and a consistent numerical scheme to that problem, stability is necessary and sufficient for
convergence.

Proof. First note that

∥(ℒ(𝑇 ) − (ℒΔ𝑡)
𝑁) 𝝓(0)∥ = ‖(ℒ(Δ𝑡) − ℒΔ𝑡) 𝝓(𝑇 − Δ𝑡)+

ℒΔ𝑡𝝓(𝑇 − Δ𝑡) − (ℒΔ𝑡)
𝑁 𝝓(0)∥

≤ 𝐾𝐶 Δ𝑡 + ∥ℒΔ𝑡 (ℒ(𝑇 − Δ𝑡) − (ℒΔ𝑡)
𝑁−1) 𝝓(0)∥

≤ 𝐾𝐶 Δ𝑡 + 𝐾𝑇 ∥(ℒ(𝑇 − Δ𝑡) − (ℒΔ𝑡)
𝑁−1) 𝝓(0)∥ +

𝐷 Δ𝑡.
(C.13)

By induction, and using that the initial error is zero, this allows us towrite all terms as∝ Δ𝑡
and hence say that consistency plus stability imply convergence.
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In the other direction, it is immediate that convergence implies stability.
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