Nuclear reactions, Bulk viscosity, Neutron Star mergers, and Gravitational Waves

  • Ian Hawke
  • P Hammond, T Celora, M Hatton
  • J Foster
  • N Andersson, G Comer

GW170817

  • One multimessenger detection.
    • Gravitational waves;
    • $\gamma$ - first detected;
    • All EM band - long term.
  • GWs seen for inspiral.
  • Constrains matter properties.
    • Masses;
    • Tidal compressibility;
    • Equation of state.
  • O4 just starting:
  • Many more detections.

How does parameter estimation work?

Parameter Estimation

Neutron star merger

  • Merger is messy:
    • Shearing instabilities;
    • Temperature increase through shocks;
    • Nuclear reactions.
  • Urca reactions: $$ \begin{aligned} \text{n} &\to \text{p} + \text{e}^- + \bar{\nu}_e \\ \text{p} + \text{e}^- &\to \text{n} + \nu_e. \end{aligned} $$
  • Keep track of species $Y_\text{e} \sim n_\text{e} / n_b$ by $$ D_t Y_\text{e} = \Gamma_\text{e}(n_b, T, Y_\text{e}). $$
  • Urca timescale $\sim 10^{-8}-10^{-10}$ seconds: $< \Delta t$. Stiff: $\Gamma_\text{e} \gg 1$.

Toy model

Approximate fluid equations, using $\theta = \nabla_a u^a$:

$$ D_t \begin{pmatrix} n_b \\ e \\ Y_\text{e} \end{pmatrix} = - \begin{pmatrix} n_b \theta \\ \left( e + p(n_b, e, Y_\text{e}) \right) \theta \\ {\color{red}\epsilon^{-1}} \left( A Y_\text{e} - B \right) \end{pmatrix}. $$

Short timescale encoded in $\epsilon \ll 1$.

Assume $Y_\text{e} = Y_0 + \epsilon Y_1 + \dots$ and separate scales:

$$ \begin{aligned} \mathcal{O}(\epsilon^{-1}) & \colon & 0 &= -A Y_0 + B & \implies & Y_0 = Y_\text{eq} = F(n_b, e), \\ \mathcal{O}(\epsilon^{0}) & \colon & D_t Y_0 &= -A Y_1 \\ & \implies & Y_1 &= -A^{-1} D_t Y_0 \\ & & &= G(n_b, e) \theta. \end{aligned} $$

Expand pressure:

$$ \begin{aligned} p(n_b, e, Y_\text{e}) &= p(n_b, e, Y_\text{eq}(n_b, e)) + \epsilon \partial_{Y_\text{e}} p Y_1 \\ &= p_\text{eq}(n_b, e) + \Pi, \\ \Pi &= -\zeta(n_b, e) \theta. \end{aligned} $$

Appearance of bulk viscous pressure.

Reduced model:

$$ D_t \begin{pmatrix} n_b \\ e \end{pmatrix} = - \begin{pmatrix} n_b \theta \\ (e + {\color{blue} p_\text{eq} + \Pi}) \theta \end{pmatrix}. $$
  • No longer tracking species: always in equilibrium.
  • Scales now tractable: $\Gamma_\text{e} \sim \epsilon^{-1} \to \Pi \sim \epsilon.$

Impact of $\Pi$

Check with a "real" equation of state:

  • Bulk viscous pressure can be big for neutron star core in merger;
  • Bulk viscous approximation needed above dashed lines (resolution dependent).

Impact on GWs

  • Do nonlinear merger simulation;
  • Simulate with $\epsilon \to 0, \infty$;
  • Filter out inspiral signal;
  • Reactions "soften" EOS, $$\Delta f \simeq 58\textrm{Hz}$$
  • Compute the mismatch between signals, $$ \mathcal{M} \sim 1 - \frac{\max \langle h_1 \vert h_2 (\sim \textrm{phase}) \rangle}{\sqrt{\langle h_1 \vert h_1 \rangle\langle h_2 \vert h_2 \rangle}} $$
  • $$ \varrho_\textrm{req} \gtrsim 1 / \sqrt{2 \mathcal{M}} \quad = 1.2 $$ Limits are distinguishable in GWs by ET.

Solve the toy problem

  • Full problem:
  • $$ D_t \begin{pmatrix} n_b \\ e \\ Y_\text{e} \end{pmatrix} = - \begin{pmatrix} n_b \theta \\ (e + p) \theta \\ {\color{red}\epsilon^{-1}} \left( A Y_\text{e} - B \right) \end{pmatrix}. $$
  • Bulk viscous approximation:
  • $$ D_t \begin{pmatrix} n_b \\ e \end{pmatrix} = - \begin{pmatrix} n_b \theta \\ (e + {\color{blue} p_\text{eq} + \Pi}) \theta \end{pmatrix}. $$
  • "Infinitely fast" $\implies \Pi \to 0$.
  • ${\footnotesize \zeta = \epsilon p_{,Y_\text{e}} A^{-1} \left( n_b Y_{\text{eq},n_b} + (e + p_\text{eq}) Y_{\text{eq}, e} \right) }.$

Check accuracy

  • Vary the fast timescale.
  • See the expected behaviour:
    • Leading order error $\propto \epsilon$;
    • Bulk viscous error $\propto \epsilon^2$;
    • More terms including, better overall error.

Argues for the use of the bulk viscous pressure correction.

Start out-of-equilibrium

  • Previously $$ Y_\text{e}(t=0) = Y_\text{eq}(t=0), $$ equilibrium.
  • Now set $$ \begin{aligned} \Delta Y &= Y_\text{e}(t=0) - Y_\text{eq}(t=0) \\&= \mathcal{O}(1). \end{aligned} $$
  • $Y_\text{e} \to Y_\text{eq}$ exponentially, timescale $\epsilon^{-1}$.
  • $\Pi$ correction doesn't seem as accurate.

Check accuracy

  • Vary the fast timescale.
  • Do not see the expected behaviour:
    • Leading order error $\propto \epsilon$;
    • Bulk viscous error $\propto \epsilon$!
    • Errors comparable.

What has gone wrong?

  • Did power series expansion $$ Y_\text{e} = Y_0 + \epsilon Y_1 + \dots $$
  • Cannot capture boundary layer - exponential term.

Boundary layers

  • Solution: rescale $\tau = t / \epsilon$.
  • Re-solve using $$ Y_\text{e} = \tilde{Y}_0(\tau) + \epsilon \tilde{Y}_1(\tau) + \dots $$
  • Captures exponential behaviour in $t$.
  • Matched asymptotics: $$ \tilde{e}(\tau=1) = e(t = \epsilon). $$
  • $\epsilon \ll 1$, match "changes initial data".
  • Simple fix: $$ e(t=0) \to e(0) - \epsilon A^{-1} \Delta Y p_{,Y_\text{e}} \theta. $$

Check accuracy

  • Vary the fast timescale.
  • Again see the expected behaviour:
    • Leading order error $\propto \epsilon$;
    • Bulk viscous error $\propto \epsilon^2$

Matched asymptotics and modifying the initial data mean we can successfully use bulk viscous approximations.

Within a numerical scheme, discrete steps or multi-physics aspects can act to push things out of equilibrium...

Summary

  • Neutron star mergers need nonlinear numerical simulations.
  • Timescales mean subgrid schemes/models required.
  • Interpret models as bulk viscous corrections.
  • Modelling reactions necessary to avoid systematic errors.

Look out for problems!

  • Coupling to full radiation hydro might give double counting issues.
  • Potential for boundary layer issues in numerical codes.

Hammond+; Most+.