How does parameter estimation work?
Approximate fluid equations, using $\theta = \nabla_a u^a$:
$$ D_t \begin{pmatrix} n_b \\ e \\ Y_\text{e} \end{pmatrix} = - \begin{pmatrix} n_b \theta \\ \left( e + p(n_b, e, Y_\text{e}) \right) \theta \\ {\color{red}\epsilon^{-1}} \left( A Y_\text{e} - B \right) \end{pmatrix}. $$Short timescale encoded in $\epsilon \ll 1$.
Assume $Y_\text{e} = Y_0 + \epsilon Y_1 + \dots$ and separate scales:
$$ \begin{aligned} \mathcal{O}(\epsilon^{-1}) & \colon & 0 &= -A Y_0 + B & \implies & Y_0 = Y_\text{eq} = F(n_b, e), \\ \mathcal{O}(\epsilon^{0}) & \colon & D_t Y_0 &= -A Y_1 \\ & \implies & Y_1 &= -A^{-1} D_t Y_0 \\ & & &= G(n_b, e) \theta. \end{aligned} $$Expand pressure:
$$ \begin{aligned} p(n_b, e, Y_\text{e}) &= p(n_b, e, Y_\text{eq}(n_b, e)) + \epsilon \partial_{Y_\text{e}} p Y_1 \\ &= p_\text{eq}(n_b, e) + \Pi, \\ \Pi &= -\zeta(n_b, e) \theta. \end{aligned} $$Appearance of bulk viscous pressure.
Reduced model:
$$ D_t \begin{pmatrix} n_b \\ e \end{pmatrix} = - \begin{pmatrix} n_b \theta \\ (e + {\color{blue} p_\text{eq} + \Pi}) \theta \end{pmatrix}. $$Check with a "real" equation of state:
Argues for the use of the bulk viscous pressure correction.
What has gone wrong?
Matched asymptotics and modifying the initial data mean we can successfully use bulk viscous approximations.
Within a numerical scheme, discrete steps or multi-physics aspects can act to push things out of equilibrium...
Look out for problems!