Incompressible Navier-Stokes:
$$ \partial_t \mathbf{v} + {\color{red}{\mathbf{v} \cdot \partial_{\mathbf{x}} \mathbf{v}}} = - \frac{\nabla p}{\rho} + {\color{blue}{\nu \nabla^2 \mathbf{v}}}. $$1d modes, $v \sim \sum_k V_k(t) e^{i k x}$, implies
$$ \partial_t V_k + {\color{red}{\sum_{k'} i k' V_{k-k'} V_{k'}}} = \dots - {\color{blue}{\nu k^2 V_k}}. $$Final term is dissipation, $V_k \sim e^{-\nu k^2 t}$.
Advective term couples scales.
Turbulence has power $\sim k^{-5/3}$ if
"Proof" only in simple cases. Shown "experimentally" for
Dissipation scale $\ell_d \sim \mathrm{Re}^{-3/4} \ell_0$. Estimate for NSs:
Numbers slightly larger in accretion disk.
Cost of DNS $\sim \mathrm{Re}^3$: can never resolve dissipation numerically.
How do we model all scales using only information from large scales?
Take Navier-Stokes, filter with $\mathbf{v} = \langle \mathbf{v} \rangle + \delta \mathbf{v}$:
The turbulence model gives the Reynolds stresses.
Decompose the stresses, use Boussinesq hypothesis:
$$ \begin{aligned} \langle \delta v^i \delta v_j \rangle &= K \delta^i_j + a^i_j \\ &= K \delta^i_j + \nu_T g^{il} \partial_{(l} \langle v_{j)} \rangle. \end{aligned} $$Gives effective pressure, viscosity
Discrete approximation:
The approximate solution solves modified equation (to $\mathcal{O}(\Delta^3)$)
$3+1$ applied to $T_{ab}$ gives
$$ \partial_t \left( \sqrt{\gamma} \mathbf{q} \right) + \partial_j \left( \alpha \sqrt{\gamma} \mathbf{f}^{(j)} \right) = \mathbf{s}. $$Fluxes nonlinear: $\mathbf{f}^{(j)}_{S_i} = S^j_i + S_i N^j$. Closure gives
$$ \langle S_{ij} \rangle = \langle S_i \rangle \langle v_j \rangle + \langle p \rangle \delta_{ij} + \tau_{ij}. $$Before LES modelling, magnetized NS mergers
Results depend on initial field strength. However, even unphysical values do not saturate correctly.
With LES modelling, magnetized NS mergers
Turbulence models: garbage in, physics out?