Turbulence modelling in neutron star merger simulations

  • Ian Hawke
  • David Radice

Toy model

Incompressible Navier-Stokes:

$$ \partial_t \mathbf{v} + {\color{red}{\mathbf{v} \cdot \partial_{\mathbf{x}} \mathbf{v}}} = - \frac{\nabla p}{\rho} + {\color{blue}{\nu \nabla^2 \mathbf{v}}}. $$

1d modes, $v \sim \sum_k V_k(t) e^{i k x}$, implies

$$ \partial_t V_k + {\color{red}{\sum_{k'} i k' V_{k-k'} V_{k'}}} = \dots - {\color{blue}{\nu k^2 V_k}}. $$

Final term is dissipation, $V_k \sim e^{-\nu k^2 t}$.

Advective term couples scales.

Kolmogorov

Turbulence has power $\sim k^{-5/3}$ if

  • stationary
  • homogeneous
  • isotropic
  • $\ell \sim$ inertial subrange.

"Proof" only in simple cases. Shown "experimentally" for

  • compressible
  • relativistic hydrodynamics
  • MHD
  • etc.

Reynolds Number

Dissipation scale $\ell_d \sim \mathrm{Re}^{-3/4} \ell_0$. Estimate for NSs:

  • Neutrino diffusion: $\mathrm{Re} \sim 4 \times 10^6$ so $\ell_\nu \sim 1 \mathrm{cm}$.
  • But $\lambda_\nu \gg \ell_\nu$, so ineffective.
  • Electron scattering: $\mathrm{Re} \sim 5 \times 10^{15}$ so $\ell_d \sim 1 \mathrm{nm}$.
  • MHD dominates below $\ell_B \sim 1 \mathrm{cm}$.

Numbers slightly larger in accretion disk.

Cost of DNS $\sim \mathrm{Re}^3$: can never resolve dissipation numerically.

Reynolds equations

How do we model all scales using only information from large scales?

  1. Statistically: short scale is unknowable.
  2. Physically: short scale is model-able.
  3. Numerically: short scale is correctable.

Take Navier-Stokes, filter with $\mathbf{v} = \langle \mathbf{v} \rangle + \delta \mathbf{v}$:

$$ \begin{aligned} \partial_t \langle \mathbf{v} \rangle + \langle \mathbf{v} \rangle \cdot \partial_{\mathbf{x}} \langle \mathbf{v} \rangle = &- \frac{\nabla \langle p \rangle}{ \rho} + \nu \nabla^2 \langle \mathbf{v} \rangle \\ &- {\color{red}{\nabla \cdot \left( \delta \mathbf{v} \otimes \delta \mathbf{v}\right)}}. \end{aligned} $$

The turbulence model gives the Reynolds stresses.

Boussinesq vs Numerics

Boussinesq

Decompose the stresses, use Boussinesq hypothesis:

$$ \begin{aligned} \langle \delta v^i \delta v_j \rangle &= K \delta^i_j + a^i_j \\ &= K \delta^i_j + \nu_T g^{il} \partial_{(l} \langle v_{j)} \rangle. \end{aligned} $$

Gives effective pressure, viscosity

$$ \begin{aligned} \partial_t \langle \mathbf{v} \rangle + \langle \mathbf{v} \rangle \cdot \partial_{\mathbf{x}} \langle \mathbf{v} \rangle = &- \frac{\nabla \left( \langle p \rangle + \rho K \right)}{ \rho } \\&+ (\nu + \nu_T) \nabla^2 \langle \mathbf{v} \rangle . \end{aligned} $$

Numerics

Discrete approximation:

  • $\partial_t \to (\mathbf{v}^{n+1} - \mathbf{v}^n) / \Delta t$,
  • $\partial_x \to (\mathbf{v}_{i} - \mathbf{v}_{i-1}) / \Delta x$.

The approximate solution solves modified equation (to $\mathcal{O}(\Delta^3)$)

$$ \begin{aligned} \partial_t \mathbf{v} + \mathbf{v} \cdot \partial_{\mathbf{x}} \mathbf{v} = &-\frac{\nabla p}{\rho} \\ &+ \left( \nu + \nu_{\Delta} \right) \nabla^2 \mathbf{v}. \end{aligned} $$

Relativity: Equations of motion

$3+1$ applied to $T_{ab}$ gives

$$ \partial_t \left( \sqrt{\gamma} \mathbf{q} \right) + \partial_j \left( \alpha \sqrt{\gamma} \mathbf{f}^{(j)} \right) = \mathbf{s}. $$

Fluxes nonlinear: $\mathbf{f}^{(j)}_{S_i} = S^j_i + S_i N^j$. Closure gives

$$ \langle S_{ij} \rangle = \langle S_i \rangle \langle v_j \rangle + \langle p \rangle \delta_{ij} + \tau_{ij}. $$
  • EOS issue: $\langle p \rangle \ne p(\langle \rho \rangle, \dots)$;
  • Recovering 4-velocity from $\langle v_j \rangle$ non-trivial;
  • Not covariant: depends on slice normal $N^a$.
  • Many closure options; see eg Radice, ViganĂ² et al.

Relativity: the observer

  1. Define $U^a$ so that $\nabla_a \left( \langle j \rangle U^a \right) = \nabla_a J^a = 0$.
  2. Decompose $T_{ab}$ wrt $U^a$: splits into (non)-ideal parts.
  3. Average orthogonal to $U^a$, giving
$$ \nabla_a T^a_{b, \mathrm{ideal}} = - \nabla_a \tau^a_b. $$
  • Covariant (up to observer choice);
  • Same EOS issues;
  • Same closure issues...
  • but now can interpret closure terms "physically": particle drift, bulk/anisotropic pressure, etc.

Magnetic field amplification: BLES

Before LES modelling, magnetized NS mergers

  • saw the Kelvin-Helmholtz instability;
  • saw the right early growth;
  • failed to capture saturation.
  • Best resolutions $\sim 10 \mathrm{m}$;
  • Dissipation scales $\sim 1 \mathrm{cm}$.

Results depend on initial field strength. However, even unphysical values do not saturate correctly.

Magnetic field amplification: ALES

With LES modelling, magnetized NS mergers

  • capture saturation;
  • reach magnetar field strengths;
  • show some universality (toroidal dominant);
  • possible inverse cascade;
  • possible $\alpha\Omega$ dynamo.

Summary

Turbulence models: garbage in, physics out?